EN
A straightforward generalization of a classical method of averaging is presented and its essential characteristics are discussed. The method constructs high-order approximations of the l-th partial derivatives of smooth functions u in inner vertices a of conformal simplicial triangulations T of bounded polytopic domains in ℝd for arbitrary d ≥ 2. For any k ≥ l ≥ 1, it uses the interpolants of u in the polynomial Lagrange finite element spaces of degree k on the simplices with vertex a only. The high-order accuracy of the resulting approximations is proved to be a consequence of a certain hypothesis and it is illustrated numerically. The method of averaging studied in [Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619–644] provides a solution of this problem in the case d = 2, k = l = 1.