Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 10 | 1 | 159-172

Tytuł artykułu

Richardson Extrapolation combined with the sequential splitting procedure and the θ-method

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Initial value problems for systems of ordinary differential equations (ODEs) are solved numerically by using a combination of (a) the θ-method, (b) the sequential splitting procedure and (c) Richardson Extrapolation. Stability results for the combined numerical method are proved. It is shown, by using numerical experiments, that if the combined numerical method is stable, then it behaves as a second-order method.

Wydawca

Czasopismo

Rocznik

Tom

10

Numer

1

Strony

159-172

Opis fizyczny

Daty

wydano
2012-02-01
online
2011-12-09

Twórcy

  • Aarhus University
  • Eötvös Loránd University
  • Eötvös Loránd University

Bibliografia

  • [1] Anderson E., Bai Z., Bischof C., Demmel J., Dongarra J., Du Croz J., Greenbaum A., Hammarling S., McKenney A., Ostrouchov S., Sorensen D., LAPACK: Users’ Guide, SIAM, Philadelphia, 1992
  • [2] Burrage K., Parallel and Sequential Methods for Ordinary Differential Equations, Numer. Math. Sci. Comput., Oxford University Press, New York, 1992
  • [3] Butcher J.C., Numerical Methods for Ordinary Differential Equations, 2nd ed., John Wiley & Sons, Chichester, 2008 http://dx.doi.org/10.1002/9780470753767
  • [4] Chin S.A., Geiser J., Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations, IMA J. Numer. Anal. (in press), DOI: 10.1093/imanum/drq022
  • [5] Dahlquist G.G., A special stability problem for linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT), 1963, 3, 27–43
  • [6] Ehle B.L., On Pade Approximations to the Exponential Function and A-stable Methods for the Numerical Solution of Initial Value Problems, PhD thesis, University of Waterloo, 1969
  • [7] Faragó I., Havasi Á., Operator Splittings and their Applications, Math. Res. Dev. Ser., Nova Science Publishers, Hauppauge, 2009
  • [8] Faragó I., Havasi Á., Zlatev Z., Efficient implementation of stable Richardson extrapolation algorithms, Comput. Math. Appl., 2010, 60(8), 2309–2325 http://dx.doi.org/10.1016/j.camwa.2010.08.025
  • [9] Faragó I., Thomsen P.G., Zlatev Z., On the additive splitting procedures and their computer realization, Appl. Math. Model., 2008, 32(8), 1552–1569 http://dx.doi.org/10.1016/j.apm.2007.04.017
  • [10] Geiser J., Tanoglu G., Operator-splitting methods via the Zassenhaus product formula, Appl. Math. Comput., 2011, 217(9), 4557–4575 http://dx.doi.org/10.1016/j.amc.2010.11.007
  • [11] Hairer E., Wanner G., Solving Ordinary Differential Equations. II, Springer Ser. Comput. Math., 14, Springer, Berlin, 1991
  • [12] Hundsdorfer W., Verwer J., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., 33, Springer, Berlin, 2003
  • [13] Lambert J.D., Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, 1991
  • [14] Richardson L.F., The deferred approach to the limit I. Single lattice, Philos. Trans. Roy. Soc. London Ser. A, 1927, 226, 299–349 http://dx.doi.org/10.1098/rsta.1927.0008
  • [15] Simpson D., Fagerli H., Jonson J.E., Tsyro S., Wind P., Tuovinen J.-P., Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. I, Unified EMEP Model Description, EMEP/MSC-W Status Report, 1/2003, Norwegian Meteorological Institute, Oslo, 2003
  • [16] Wilkinson J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford-London, 1965
  • [17] Zlatev Z., Modified diagonally implicit Runge-Kutta methods, SIAM J. Sci. Statist. Comput., 1981, 2(3), 321–334 http://dx.doi.org/10.1137/0902026
  • [18] Zlatev Z., Computer Treatment of Large Air Pollution Models, Environmental Science and Technology Library, 2, Kluwer, Dordrecht-Boston-London, 1995 http://dx.doi.org/10.1007/978-94-011-0311-4
  • [19] Zlatev Z., Dimov I., Computational and Numerical Challenges in Environmental Modelling, Stud. Comput. Math., 13, Elsevier, Amsterdam, 2006
  • [20] Zlatev Z., Faragó I., Havasi Á., Stability of the Richardson extrapolation applied together with the θ-method, J. Comput. Appl. Math., 2010, 235(2), 507–517 http://dx.doi.org/10.1016/j.cam.2010.05.052

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-011-0099-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.