Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 9 | 6 | 1349-1353

Tytuł artykułu

One-fibered ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let (R;m) be a 2-dimensional rational singularity with algebraically closed residue field and whose associated graded ring is an integrally closed domain. Göhner has shown that for every prime divisor v of R, there exists a unique one-fibered complete m-primary ideal A v in R with unique Rees valuation v and such that any complete m-primary ideal with unique Rees valuation v, is a power of A v. We show that for v ≠ ordR, A v is the inverse transform of a simple complete ideal in an immediate quadratic transform of R, if and only if the degree coefficient d(A v; v) is 1. We then give a criterion for R to be regular.

Twórcy

  • Al Akhawayn University

Bibliografia

  • [1] Debremaeker R., First neighborhood complete ideals in two-dimensional Muhly local domains, J. Pure Appl. Algebra, 2009, 213(6), 1140–1151 http://dx.doi.org/10.1016/j.jpaa.2008.11.002
  • [2] Debremaeker R., Van Lierde V., The effect of quadratic transformations on degree functions, Beiträge Algebra Geom., 2006, 47(1), 121–135
  • [3] Debremaeker R., Van Lierde V., On adjacent ideals in two-dimensional rational singularities, Comm. Algebra, 2010, 38(1), 308–331 http://dx.doi.org/10.1080/00927870903392476
  • [4] Göhner H., Semifactoriality and Muhly’s condition (N) in two dimensional local rings, J. Algebra, 1975, 34(3), 403–429 http://dx.doi.org/10.1016/0021-8693(75)90166-0
  • [5] Huneke C., Complete ideals in two-dimensional regular local rings, In: Commutative Algebra, Berkeley, June 15–July 2, 1987, Math. Sci. Res. Inst. Publ., 15, New York, Springer, 1989, 325–338
  • [6] Huneke C., Swanson I., Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Ser., 336, Cambridge University Press, Cambridge, 2006
  • [7] Lipman J., Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math., 1969, 36, 195–279 http://dx.doi.org/10.1007/BF02684604
  • [8] Noh S., Simple complete ideals in two-dimensional regular local rings, Comm. Algebra, 1997, 25(5), 1563–1572 http://dx.doi.org/10.1080/00927879708825936
  • [9] Noh S., Watanabe K., Adjacent integrally closed ideals in 2-dimensional regular local rings, J. Algebra, 2006, 302(1), 156–166 http://dx.doi.org/10.1016/j.jalgebra.2005.10.034
  • [10] Rees D., Degree functions in local rings, Math. Proc. Cambridge Philos. Soc., 1961, 57(1), 1–7 http://dx.doi.org/10.1017/S0305004100034794
  • [11] Rees D., Sharp R.Y., On a theorem of B. Teissier on multiplicities of ideals in local rings, J. Lond. Math. Soc., 1978, 18(3), 449–463 http://dx.doi.org/10.1112/jlms/s2-18.3.449
  • [12] Van Lierde V., A mixed multiplicity formula for complete ideals in 2-dimensional rational singularities Proc. Amer. Math. Soc., 2010, 138(12), 4197–4204 http://dx.doi.org/10.1090/S0002-9939-2010-10455-0
  • [13] Van Lierde V., Degree functions and projectively full ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal, J. Pure Appl. Algebra, 2010, 214(5), 512–518 http://dx.doi.org/10.1016/j.jpaa.2009.06.002
  • [14] Zariski O., Polynomial ideals defined by infinitely near base points, Amer. J. Math., 1938, 60(1), 151–204 http://dx.doi.org/10.2307/2371550
  • [15] Zariski O., Samuel P., Commutative Algebra. II, The University Series in Higher Mathematics, Van Nostrand, Princeton-Toronto-London-New York, 1960

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-011-0095-y
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.