Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study non-autonomous rational difference equations. Under the assumption of a periodic non-autonomous parameter, we show that a well known trichotomy result in the autonomous case is preserved in a certain sense which is made precise in the body of the text. In addition we discuss some questions regarding whether periodicity preserves or destroys boundedness.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
1135-1142
Opis fizyczny
Daty
wydano
2011-10-01
online
2011-07-26
Twórcy
autor
- University of Rhode Island
autor
- Rochester Institute of Technology
Bibliografia
- [1] Camouzis E., Ladas G., When does periodicity destroy boundedness in rational equations?, J. Difference Equ. Appl., 2006, 12(9), 961–979 http://dx.doi.org/10.1080/10236190600822369
- [2] Camouzis E., Ladas G., Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Adv. Discrete Math. Appl., 5, Chapman & Hall/CRC Press, Boca Raton, 2007 http://dx.doi.org/10.1201/9781584887669
- [3] Cushing J.M., Henson S.M., A periodically forced Beverton-Holt equation, J. Difference Equ. Appl., 2002, 8(12), 1119–1120 http://dx.doi.org/10.1080/1023619021000053980
- [4] Elaydi S., Sacker R.J., Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures, J. Difference Equ. Appl., 2005, 11(4–5), 337–346 http://dx.doi.org/10.1080/10236190412331335418
- [5] El-Metwally H.A., Grove E.A., Ladas G., A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 2000, 245(1), 161–170 http://dx.doi.org/10.1006/jmaa.2000.6747
- [6] Grove E.A., Kostrov Y., Ladas G., Schultz S.W., Riccati difference equations with real period-2 coefficients, Comm. Appl. Nonlinear Anal., 2007, 14(2), 33–56
- [7] Grove E.A., Ladas G., Periodicities in Nonlinear Difference Equations, Adv. Discrete Math. Appl., 4, Chapman & Hall/CRC Press, Boca Raton, 2005
- [8] Grove E.A., Ladas G., Predescu M., Radin M., On the global character of the difference equation \(x_{n + 1} = \frac{{\alpha + \gamma x_n - (2k + 1) + \delta x_{n - 2l} }} {{A + x_{n - 2l} }} \) , J. Difference Equ. Appl., 2003, 9(2), 171–199 http://dx.doi.org/10.1080/1023619021000054015
- [9] Karakostas G.L., Stević S., On the recursive sequence \(x_{n + 1} = B + \frac{{x_{n - k} }} {{a_0 x_n + \cdots + a_{k - 1} x_{n - k + 1} + \gamma }} \) , J. Difference Equ. Appl., 2004, 10(9), 809–815 http://dx.doi.org/10.1080/10236190410001659732
- [10] Kocić V.L., Ladas G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Math. Appl., 256, Kluwer, Dordrecht, 1993
- [11] Kulenovic M.R.S., Merino O., Stability analysis of Pielou’s equation with period-two coefficient, J. Difference Equ. Appl., 2007, 13(5), 383–406 http://dx.doi.org/10.1080/10236190601045929
- [12] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1(1), 91–100 http://dx.doi.org/10.2140/involve.2008.1.91
- [13] Palladino F.J., On the characterization of rational difference equations, J. Difference Equ. Appl., 2009, 15(3), 253–260 http://dx.doi.org/10.1080/10236190802119903
- [14] Palladino F.J., On periodic trichotomies, J. Difference Equ. Appl., 2009, 15(6), 605–620 http://dx.doi.org/10.1080/10236190802258677
- [15] Stevic S., Behavior of the positive solutions of the generalized Beddington-Holt equation, Panamer. Math. J., 2000, 10(4), 77–85
- [16] Stevic S., On the recursive sequence x n+1 = α n + x n−1/x n. II, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2003, 10(6), 911–916
- [17] Stevic S., A short proof of the Cushing-Henson conjecture, Discrete Dyn. Nat. Soc., 2006, ID 37264
- [18] Stevic S., On positive solutions of a (k + 1)th order difference equation, Appl. Math. Lett., 2006, 19(5), 427–431 http://dx.doi.org/10.1016/j.aml.2005.05.014
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0066-3