This paper is devoted to the numerical solution of nonlinear elliptic partial differential equations. Such problems describe various phenomena in science. An approach that exploits Hilbert space theory in the numerical study of elliptic PDEs is the idea of preconditioning operators. In this survey paper we briefly summarize the main lines of this theory with various applications.
[1] Antal I., Karátson J., A mesh independent superlinear algorithm for some nonlinear nonsymmetric elliptic systems, Comput. Math. Appl., 2008, 55(10), 2185–2196 http://dx.doi.org/10.1016/j.camwa.2007.11.014
[2] Antal I., Karátson J., Mesh independent superlinear convergence of an inner-outer iterative method for semilinear elliptic interface problems, J. Comput. Appl. Math., 2009, 226(2), 190–196 http://dx.doi.org/10.1016/j.cam.2008.08.001
[3] Axelsson O., On global convergence of iterative methods, In: Iterative Solution of Nonlinear Systems of Equations, Oberwolfach, 1982, Lecture Notes in Math., 953, Springer, Berlin-New York, 1982, 1–19 http://dx.doi.org/10.1007/BFb0069371
[5] Axelsson O., Faragó I., Karátson J., Sobolev space preconditioning for Newton’s method using domain decomposition, Numer. Linear Algebra Appl., 2002, 9(6–7), 585–598 http://dx.doi.org/10.1002/nla.293
[6] Axelsson O., Karátson J., Conditioning analysis of separate displacement preconditioners for some nonlinear elasticity systems, Math. Comput. Simulation, 2004, 64(6), 649–668 http://dx.doi.org/10.1016/j.matcom.2003.11.017
[8] Deuflhard P., Weiser M., Global inexact Newton multilevel FEM for nonlinear elliptic problems, In: Multigrid Methods V, Stuttgart, 1996, Lecture Notes Comput. Sci. Eng., 3, Springer, Berlin, 1998, 71–89 http://dx.doi.org/10.1007/978-3-642-58734-4_4
[9] Faber V., Manteuffel T.A., Parter S.V., On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations, Adv. in Appl. Math., 1990, 11(2), 109–163 http://dx.doi.org/10.1016/0196-8858(90)90007-L
[10] Faragó I., Karátson J., Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications, Adv. Comput. Theory Pract., 11, Nova Science Publishers, Hauppauge, 2002
[11] Faragó I., Karátson J., Sobolev gradient type preconditioning for the Saint-Venant model of elasto-plastic torsion, Int. J. Numer. Anal. Model., 2008, 5(2), 206–221
[13] Křížek M., Neittaanmäki P., Mathematical and Numerical Modelling in Electrical Engineering, Math. Model. Theory Appl., 1, Kluwer, Dordrecht, 1996
[14] Karátson J., Gradient method in Sobolev space for nonlocal boundary value problems, Electron. J. Differential Equations, 2000, #51
[15] Karátson J., Constructive Sobolev gradient preconditioning for semilinear elliptic systems, Electron. J. Differential Equations, 2004, #75
[16] Karátson J., Faragó I., Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space, SIAM J. Numer. Anal., 2003, 41(4), 1242–1262 http://dx.doi.org/10.1137/S0036142901384277
[17] Karátson J., Kurics T., Lirkov I., A parallel algorithm for systems of convection-diffusion equations, In: Numerical Methods and Applications, 2006, Lecture Notes in Comput. Sci., 4310, Springer, New York, 2007, 65–73 http://dx.doi.org/10.1007/978-3-540-70942-8_7
[18] Karátson J., Lóczi L., Sobolev gradient preconditioning for the electrostatic potential equation, Comput. Math. Appl., 2005, 50(7), 1093–1104 http://dx.doi.org/10.1016/j.camwa.2005.08.011
[19] Karátson J., Neuberger J.W., Newton’s method in the context of gradients, Electron. J. Differential Equations, 2007, #124
[20] Keller H.B., Elliptic boundary value problems suggested by nonlinear diffusion processes, Arch. Rational Mech. Anal., 1969, 35(5), 363–381 http://dx.doi.org/10.1007/BF00247683
[21] Kovács B., A comparison of some efficient numerical methods for a nonlinear elliptic problem, Cent. Eur. J. Math., 2012, 10(1)
[22] Martinsson P.-G., A fast direct solver for a class of elliptic partial differential equations, J. Sci. Comput., 2009, 38(3), 316–330 http://dx.doi.org/10.1007/s10915-008-9240-6
[23] Meurant G., Computer Solution of Large Linear Systems, Stud. Math. Appl., 28, North-Holland, Amsterdam, 1999
[24] Neuberger J.W., Prospects for a central theory of partial differential equations, Math. Intelligencer, 2005, 27(3), 47–55 http://dx.doi.org/10.1007/BF02985839
[25] Neuberger J.W., Sobolev Gradients and Differential Equations, 2nd ed., Lecture Notes in Math., 1670, Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-04041-2
[26] Neuberger J.W., Renka R.J., Sobolev gradients and the Ginzburg-Landau functional, SIAM J. Sci. Comput., 1998, 20(2), 582–590 http://dx.doi.org/10.1137/S1064827596302722
[27] Neuberger J.W., Renka R.J., Sobolev gradients: introduction, applications, problems, In: Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms, Contemp. Math., 257, American Mathematical Society, Providence, 2004, 85–99
[29] Szabó B., Babuška I., Finite Element Analysis, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1991
[30] Zlatev Z., Computer Treatment of Large Air Pollution Models, Environmental Science and Technology Library, 2, Kluwer, Dordrecht-Boston-London, 1995 http://dx.doi.org/10.1007/978-94-011-0311-4