PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 5 | 1100-1113
Tytuł artykułu

Conditions for strong Morita equivalence of partially ordered semigroups

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate when a partially ordered semigroup (with various types of local units) is strongly Morita equivalent to a posemigroup from a given class of partially ordered semigroups. Necessary and sufficient conditions for such equivalence are obtained for a series of well-known classes of posemigroups. A number of sufficient conditions for several classes of naturally ordered posemigroups are also provided.
Wydawca
Czasopismo
Rocznik
Tom
9
Numer
5
Strony
1100-1113
Opis fizyczny
Daty
wydano
2011-10-01
online
2011-07-26
Twórcy
autor
Bibliografia
  • [1] Banaschewski B., Functors into categories of M-sets, Abh. Math. Semin. Univ. Hamburg, 1972, 38, 49–64 http://dx.doi.org/10.1007/BF02996922
  • [2] Bass H., The Morita Theorems, lecture notes, University of Oregon, Eugene, Oregon, 1962
  • [3] Bulman-Fleming S., Flatness properties of S-posets: an overview, In: Proceedings of the International Conference on Semigroups, Acts and Categories with Applications to Graphs, Tartu, June 27–30, 2007, Math. Stud. (Tartu), 3, Estonian Mathematical Society, Tartu, 2008, 28–40
  • [4] Laan V., Context equivalence of semigroups, Period. Math. Hungar., 2010, 60(1), 81–94 http://dx.doi.org/10.1007/s10998-010-1081-z
  • [5] Laan V., Márki L., Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 2011, 215(10), 2538–2546 http://dx.doi.org/10.1016/j.jpaa.2011.02.017
  • [6] Laan V., Márki L., Morita invariants for semigroups with local units, Monatsh. Math (in press), DOI: 10.1007/s00605-010-0279-8
  • [7] Lawson M.V., Morita equivalence of semigroups with local units, J. Pure Appl. Algebra, 2011, 215(4), 455–470 http://dx.doi.org/10.1016/j.jpaa.2010.04.030
  • [8] McAlister D.B., Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Austral. Math. Soc. Ser. A, 1981, 31(3), 325–336 http://dx.doi.org/10.1017/S1446788700019467
  • [9] McAlister D.B., Rees matrix covers for locally inverse semigroups, Trans. Amer. Math. Soc., 1983, 277(2), 727–738 http://dx.doi.org/10.1090/S0002-9947-1983-0694385-3
  • [10] McAlister D.B., Rees matrix covers for regular semigroups, J. Algebra, 1984, 89(2), 264–279 http://dx.doi.org/10.1016/0021-8693(84)90217-5
  • [11] McAlister D.B., Blyth T.S., Split orthodox semigroups, J. Algebra, 1978, 51(2), 491–525 http://dx.doi.org/10.1016/0021-8693(78)90118-7
  • [12] Nambooripad K.S.S., The natural partial order on a regular semigroup, Proc. Edinb. Math. Soc., 1980, 23(3), 249–260 http://dx.doi.org/10.1017/S0013091500003801
  • [13] Neklyudova V.V., Polygons under semigroups with a system of local units, Fundam. Prikl. Mat., 1997, 3(3), 879–902 (in Russian)
  • [14] Neklyudova V.V., Morita equivalence of semigroups with a system of local units, Fundam. Prikl. Mat., 1999, 5(2), 539–555 (in Russian)
  • [15] Talwar S., Morita equivalence for semigroups, J. Austral. Math. Soc. Ser. A, 1995, 59(1), 81–111 http://dx.doi.org/10.1017/S1446788700038489
  • [16] Talwar S., Strong Morita equivalence and a generalisation of the Rees theorem, J. Algebra, 1996, 181(2), 371–394 http://dx.doi.org/10.1006/jabr.1996.0125
  • [17] Tart L., Morita equivalence for ordered semigroups with local units, Period. Math. Hungar. (in press)
  • [18] Tart L., On Morita equivalence of partially ordered semigroups with local units, Acta Comment. Univ. Tartu. Math. (in press)
  • [19] Tart L., Characterizations of strong Morita equivalence for ordered semigroups with local units (submitted)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0053-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.