In this paper we consider a pair of right adjoint contravariant functors between abelian categories and describe a family of dualities induced by them.
[3] Breaz S., A Morita type theorem for a sort of quotient categories, Czechoslovak Math. J., 2005, 55(130)(1), 133–144 http://dx.doi.org/10.1007/s10587-005-0009-x
[5] Breaz S., Modoi C., On a quotient category, Studia Univ. Babeş-Bolyai Math., 2002, 47(2), 17–28
[6] Breaz S., Modoi C., Pop F., Natural equivalences and dualities, In: Proceedings of the International Conference on Modules and Representation Theory, Cluj-Napoca, July 7–12, 2008, Presa Universitară Clujeană, Cluj-Napoca, 2009, 25–40
[7] Breaz S., Pop F., Dualities induced by right adjoint contravariant functors, Studia Univ. Babeş-Bolyai Math., 2010, 55(1), 75–83
[8] Castaño-Iglesias F., On a natural duality between Grothendieck categories, Comm. Algebra, 2008, 36(6), 2079–2091 http://dx.doi.org/10.1080/00927870801949534
[15] Morita K., Duality for modules and its applications to the theory of rings with minimum conditions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 1958, 6, 83–142
[16] Năstăsescu C., Torrecillas B., Morita duality for Grothendieck categories with applications to coalgebras, Comm. Algebra, 2005, 33(11), 4083–4096 http://dx.doi.org/10.1080/00927870500261397
[17] Năstăsescu C., Van Oystaeyen F., Methods of Graded Rings, Lecture Notes in Math., 1836, Springer, Berlin, 2004
[18] Tonolo A., On a finitistic cotilting type duality, Comm. Algebra, 2002, 30(10), 5091–5106 http://dx.doi.org/10.1081/AGB-120014686
[19] Wakamatsu T., Tilting modules and Auslander’s Gorenstein property, J. Algebra, 2004, 275(1), 3–39 http://dx.doi.org/10.1016/j.jalgebra.2003.12.008
[20] Wisbauer R., Cotilting objects and dualities, In: Representations of Algebras, São Paulo, 1999, Lecture Notes in Pure and Appl. Math., 224, Marcel Dekker, New York, 2002, 215–233
[21] Wisbauer R., Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach, Philadelphia, 1991