Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 9 | 4 | 757-764

Tytuł artykułu

Large dimensional sets not containing a given angle

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We say that a set in a Euclidean space does not contain an angle α if the angle determined by any three points of the set is not equal to α. The goal of this paper is to construct compact sets of large Hausdorff dimension that do not contain a given angle α ∈ (0,π). We will construct such sets in ℝn of Hausdorff dimension c(α)n with a positive c(α) depending only on α provided that α is different from π/3, π/2 and 2π/3. This improves on an earlier construction (due to several authors) that has dimension c(α) log n. The main result of the paper concerns the case of the angles π/3 and 2π/3. We present self-similar sets in ℝn of Hausdorff dimension $c{{\sqrt[3]{n}} \mathord{\left/ {\vphantom {{\sqrt[3]{n}} {\log n}}} \right. \kern-\nulldelimiterspace} {\log n}}$ with the property that they do not contain the angles π/3 and 2π/3. The constructed sets avoid not only the given angle α but also a small neighbourhood of α.

Wydawca

Czasopismo

Rocznik

Tom

9

Numer

4

Strony

757-764

Opis fizyczny

Daty

wydano
2011-08-01
online
2011-05-26

Twórcy

  • Hungarian Academy of Sciences

Bibliografia

  • [1] Erdős P., Füredi Z., The greatest angle among n points in the d-dimensional Euclidean space, In: Combinatorial Mathematics, Marseille-Luminy, 1981, North-Holland Math. Stud., 75, North-Holland, Amsterdam, 1983, 275–283
  • [2] Falconer K.J., On a problem of Erdős on fractal combinatorial geometry, J. Combin. Theory Ser. A, 1992, 59(1), 142–148 http://dx.doi.org/10.1016/0097-3165(92)90106-5
  • [3] Harangi V., Keleti T., Kiss G., Maga P., Máthé A., Mattila P., Strenner B., How large dimension guarantees a given angle?, preprint available at http://arxiv.org/abs/1101.1426
  • [4] Johnson W.B., Lindenstrauss J., Extensions of Lipschitz mappings into a Hilbert space, In: Conference in Modern Analysis and Probability, New Haven, 1982, Contemp. Math., 26, American Mathematical Society, Providence, 1984, 189–206
  • [5] Keleti T., Construction of one-dimensional subsets of the reals not containing similar copies of given patterns, Anal. PDE, 2008, 1(1), 29–33 http://dx.doi.org/10.2140/apde.2008.1.29
  • [6] Maga P., Full dimensional sets without given patterns, Real Anal. Exchange, 2010, 36(1), 79–90
  • [7] Salmon G., A Treatise on the Analytic Geometry of Three Dimensions, 2nd ed., Hodges, Smith, and Company, Cambridge, 1865

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-011-0043-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.