Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 9 | 4 | 797-802

Tytuł artykułu

Extremely non-complex Banach spaces

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.

Wydawca

Czasopismo

Rocznik

Tom

9

Numer

4

Strony

797-802

Daty

wydano
2011-08-01
online
2011-05-26

Twórcy

  • Universidad de Granada
autor
  • Universidad de Granada

Bibliografia

  • [1] Duncan J., McGregor C.M., Pryce J.D., White A.J., The numerical index of a normed space, J. Lond. Math. Soc., 1970, 2, 481–488
  • [2] Kadets V.M., Some remarks concerning the Daugavet equation, Quaest. Math., 1996, 19(1–2), 225–235 http://dx.doi.org/10.1080/16073606.1996.9631836
  • [3] Kadets V., Katkova O., Martín M., Vishnyakova A., Convexity around the unit of a Banach algebra, Serdica Math. J., 2008, 34(3), 619–628
  • [4] Kadets V., Martín M., Merí J., Norm equalities for operators, Indiana Univ. Math. J., 2007, 56(5), 2385–2411 http://dx.doi.org/10.1512/iumj.2007.56.3046
  • [5] Kadets V.M., Shvidkoy R.V., Sirotkin G.G., Werner D., Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 2000, 352(2), 855–873 http://dx.doi.org/10.1090/S0002-9947-99-02377-6
  • [6] Koszmider P., Banach spaces of continuous functions with few operators, Math. Ann., 2004, 330(1), 151–183 http://dx.doi.org/10.1007/s00208-004-0544-z
  • [7] Koszmider P., Martín M., Merí J., Extremely non-complex C(K) spaces, J. Math. Anal. Appl., 2009, 350(2), 601–615 http://dx.doi.org/10.1016/j.jmaa.2008.04.021
  • [8] Koszmider P., Martín M., Merí J., Isometries on extremely non-complex C(K) spaces, J. Inst. Math. Jussieu, 2011, 10(2), 325–348 http://dx.doi.org/10.1017/S1474748010000204
  • [9] Martín M., Oikhberg T., An alternative Daugavet property, J. Math. Anal. Appl., 2004, 294(1), 158–180 http://dx.doi.org/10.1016/j.jmaa.2004.02.006
  • [10] Megginson R.E., An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer, New York, 1998
  • [11] Oikhberg T., Some properties related to the Daugavet property, In: Banach Spaces and their Applications in Analysis, Walter de Gruyter, Berlin, 2007, 399–401

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-011-0040-0