Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 9 | 4 | 833-850
Tytuł artykułu

On the index of nonlocal elliptic operators for compact Lie groups

Treść / Zawartość
Warianty tytułu
Języki publikacji
We consider a class of nonlocal operators associated with a compact Lie group G acting on a smooth manifold. A notion of symbol of such operators is introduced and an index formula for elliptic elements is obtained. The symbol in this situation is an element of a noncommutative algebra (crossed product by G) and to obtain an index formula, we define the Chern character for this algebra in the framework of noncommutative geometry.
Opis fizyczny
  • [1] Antonevich A.B., Elliptic pseudodifferential operators with a finite group of shifts, Izv. Akad. Nauk SSSR Ser. Mat., 1973, 37(3), 663–675 (in Russian)
  • [2] Atiyah M.F., Elliptic Operators and Compact Groups, Lecture Notes in Math., 401, Springer, Berlin-New York, 1974
  • [3] Atiyah M.F., Segal G.B., The index of elliptic operators II, Ann. of Math., 1968, 87(3), 531–545
  • [4] Baum P., Connes A., Chern character for discrete groups, In: A Fête of Topology, Academic Press, Boston, 1988, 163–232
  • [5] Berline N., Getzler E., Vergne M., Heat Kernels and Dirac Operators, Grundlehren Math. Wiss., 298, Springer, Berlin, 1992
  • [6] Berline N., Vergne M., The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math., 1996, 124(1–3), 11–49
  • [7] Block J., Getzler E., Equivariant cyclic homology and equivariant differential forms, Ann. Sci. École Normale Sup., 1994, 27(4), 493–527
  • [8] Bredon G.E., Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Academic Press, New York-London, 1972
  • [9] Brylinski J.-L., Nistor V., Cyclic cohomology of étale groupoids, K-Theory, 1994, 8(4), 341–365
  • [10] Connes A., Cyclic cohomology and the transverse fundamental class of a foliation, In: Geometric Methods in Operator Algebras, Kyoto, 1983, Pitman Res. Notes Math. Ser., 123, Longman, Harlow, 1986, 52–144
  • [11] Connes A., Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., 1985, 62, 257–360
  • [12] Dave S., An equivariant noncommutative residue, preprint available at
  • [13] Dave S., Equivariant homology for pseudodifferential operators, preprint available at
  • [14] Karoubi M., Homologie Cyclique et K-théorie, Astérisque, 149, Soc. Math. France Inst. Henri Poincaré, Paris, 1987
  • [15] Kawasaki T., The index of elliptic operators over V-manifolds, Nagoya Math. J., 1981, 84, 135–157
  • [16] Kordyukov Yu.A., Index theory and non-commutative geometry on foliated manifolds, Russian Math. Surveys, 2009, 64(2), 273–391
  • [17] Koszul J.L., Sur certains groupes de transformations de Lie, In: Géométrie Différentielle, Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, Paris, 1953, 137–141
  • [18] Nazaikinskii V.E., Savin A.Yu., Sternin B.Yu., Elliptic Theory and Noncommutative Geometry, Oper. Theory Adv. Appl., 183, Birkhäuser, Basel, 2008
  • [19] Nistor V., Higher index theorems and the boundary map in cyclic cohomology, Doc. Math., 1997, 2, 263–295
  • [20] Pedersen G.K., C*-Algebras and Their Automorphism Groups, London Math. Soc. Monogr., 14, Academic Press, London-New York, 1979
  • [21] Quillen D., Superconnections and the Chern character, Topology, 1985, 24(1), 89–95
  • [22] Sternin B.Yu., On a class of nonlocal elliptic operators for compact Lie groups. Uniformization and finiteness theorem, Cent. Eur. J. Math., 2011, 9(4)
  • [23] Tsygan B.L., The homology of matrix Lie algebras over rings and the Hochschild homology, Russian Math. Surveys, 1983, 38(2), 198–199
  • [24] Vergne M., Equivariant index formulas for orbifolds, Duke Math. J., 1996, 82(3), 637–652
  • [25] Verona A., A de Rham type theorem for orbit spaces, Proc. Amer. Math. Soc., 1988, 104(1), 300–302
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.