We characterize the family of quotients of peripherally continuous functions. Moreover, we study cardinal invariants related to quotients in the case of peripherally continuous functions and the complement of this family.
[1] Bartoszyński T., Judah H., Set Theory: on the Structure of the Real Line, A.K. Peters, Wellesley, 1995
[2] Ciesielski K., Maliszewski A., Cardinal invariants concerning bounded families of extendable and almost continuous functions, Proc. Amer. Math. Soc., 1998, 126(2), 471–479 http://dx.doi.org/10.1090/S0002-9939-98-04098-2
[3] Ciesielski K., Natkaniec T., Algebraic properties of the class of Sierpiński-Zygmund functions, Topology Appl., 1997, 79(1), 75–99 http://dx.doi.org/10.1016/S0166-8641(96)00128-9
[4] Ciesielski K., Recław I., Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange, 1995/96, 21(2), 459–472
[5] Jałocha J., Quotients of quasi-continuous functions, J. Appl. Anal., 2000, 6(2), 251–258 http://dx.doi.org/10.1515/JAA.2000.251
[6] Jordan F., Cardinal invariants connected with adding real functions, Real Anal. Exchange, 1996/97, 22(2), 696–713
[7] Kosman J., Maliszewski A., Quotients of Darboux-like functions, Real Anal. Exchange, 2009/10, 35(1), 243–251
[8] Natkaniec T., Almost continuity, Real Anal. Exchange, 1991/92, 17(2), 462–520