PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2011 | 9 | 3 | 640-656
Tytuł artykułu

Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator.
Twórcy
autor
autor
Bibliografia
  • [1] Adly S., Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 1996, 201(2), 609–630 http://dx.doi.org/10.1006/jmaa.1996.0277
  • [2] Agarwal R.P., Cho Y.J., Huang N.J., Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. Math. Lett, 2000, 13(6), 19–24 http://dx.doi.org/10.1016/S0893-9659(00)00048-3
  • [3] Agarwal R.P., Huang N.J., Cho Y.J., Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings, J. Inequal. Appl., 2002, 7(6), 807–828 http://dx.doi.org/10.1155/S1025583402000425
  • [4] Bauschke H.H., Borwein J.M., On projection algorithms for solving convex feasibility problems, SIAM Rev, 1996, 38(3), 367–426 http://dx.doi.org/10.1137/S0036144593251710
  • [5] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Student, 1994, 63(1–4), 123–145
  • [6] Brézis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, North-Holland, Amsterdam-London, 1973
  • [7] Ceng L.-C, Yao J.-C, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 2008, 214(1), 186–201 http://dx.doi.org/10.1016/j.cam.2007.02.022
  • [8] Ceng L.-C, Yao J.-C, A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem, Nonlinear Anal., 2010, 72(3–4), 1922–1937
  • [9] Ceng L.-C, Yao J.-C, Convergence and certain control conditions for hybrid viscosity approximation methods, Nonlinear Anal., 2010, 73(7), 2078–2087 http://dx.doi.org/10.1016/j.na.2010.05.036
  • [10] Chadli O., Konnov I.V., Yao J.C, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl., 2004, 48(3–4), 609–616 http://dx.doi.org/10.1016/j.camwa.2003.05.011
  • [11] Chadli O., Schaible S., Yao J.C, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl., 2004, 121(3), 571–596 http://dx.doi.org/10.1023/B:JOTA.0000037604.96151.26
  • [12] Chadli O., Wong N.C., Yao J.C, Equilibrium problems with applications to eigenvalue problems, J. Optim. Theory Appl., 2003, 117(2), 245–266 http://dx.doi.org/10.1023/A:1023627606067
  • [13] Chang S.S., Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 2000, 248(2), 438–454 http://dx.doi.org/10.1006/jmaa.2000.6919
  • [14] Combettes PL., Hilbertian convex feasibility problem: convergence of projection methods, Appl. Math. Optim., 1997, 35(3), 311–330
  • [15] Combettes PL., Hirstoaga S.A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 2005, 6(1), 117–136
  • [16] Deutsch F., Yamada I., Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 1998, 19(1–2), 33–56
  • [17] Ding X.P., Perturbed Ishikawa type iterative algorithm for generalized quasivariational inclusions, Appl. Math. Comput, 2003, 141(2–3), 359–373 http://dx.doi.org/10.1016/S0096-3003(02)00261-8
  • [18] Ding X.P., Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett., 2004, 17(2), 225–235 http://dx.doi.org/10.1016/S0893-9659(04)90036-5
  • [19] Ding X.P., Parametric completely generalized mixed implicit quasi-variational inclusions involving/i-maximal monotone mappings, J. Comput. Appl. Math., 2005, 182(2), 252–269 http://dx.doi.org/10.1016/j.cam.2004.11.048
  • [20] Ding X.P., Lin Y.C., Yao J.C, Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Appl. Math. Mech. (English Ed.), 2006, 27(9), 1157–1164 http://dx.doi.org/10.1007/s10483-006-0901-1
  • [21] Fang Y.-P., Huang N.-J., H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput, 2003, 145(2–3), 795–803 http://dx.doi.org/10.1016/S0096-3003(03)00275-3
  • [22] Fang Y.-P., Huang N.-J., H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett, 2004, 17(6), 647–653 http://dx.doi.org/10.1016/S0893-9659(04)90099-7
  • [23] Flåm S.D., Antipin A.S., Equilibrium programming using proximal-like algorithms, Math. Programming, 1997, 78(1), 29–41 http://dx.doi.org/10.1007/BF02614504
  • [24] Huang N.-J., Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions, Comput. Math. Appl, 1998, 35(10), 1–7 http://dx.doi.org/10.1016/S0898-1221(98)00066-2
  • [25] Jung J.S., Iterative algorithms with some control conditions for quadratic optimizations, Panamer. Math. J., 2006, 16(4), 13–25
  • [26] Jung J.S., A general iterative scheme for k-strictly pseudo-contractive mappings and optimization problems, Appl. Math. Comput, 2010, 217(12), 5581–5588 http://dx.doi.org/10.1016/j.amc.2010.12.034
  • [27] Kocourek P., Takahashi W., Yao J.-C, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., 2010, 14(6), 2497–2511
  • [28] Konnov I.V., Schaible S., Yao J.C., Combined relaxation method for mixed equilibrium problems, J. Optim. Theory Appl, 2005, 126(2), 309–322 http://dx.doi.org/10.1007/s10957-005-4716-0
  • [29] Lemaire B., Which fixed point does the iteration method select?, In: Recent Advances in Optimization, Trier, 1996, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997, 154–167
  • [30] Lin L.-J., Variational inclusions problems with applications to Ekelands variational principle, fixed point and optimization problems, J. Global Optim., 2007, 39(4), 509–527 http://dx.doi.org/10.1007/s10898-007-9153-1
  • [31] Moudafi A., Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl., 2000, 241(1), 46–55 http://dx.doi.org/10.1006/jmaa.1999.6615
  • [32] Noor M.A., Generalized set-valued variational inclusions and resolvent equation, J. Math. Anal. Appl., 1998, 228(1), 206–220 http://dx.doi.org/10.1006/jmaa.1998.6127
  • [33] Peng J.-W., Wang Y, Shyu D.S., Yao J.-C, Common solutions of an iterative scheme for variational inclusions, equilibrium problems and fixed point problems, J. Inequal. Appl., 2008, ID 720371
  • [34] Peng J.-W., Yao J.-C, A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems, Taiwanese J. Math., 2008, 12(6), 1401–1432
  • [35] Plubtieng S., Punpaeng R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2007, 336(1), 455–469 http://dx.doi.org/10.1016/j.jmaa.2007.02.044
  • [36] Robinson S.M., Generalized equations and their solutions. I: Basic theory, Math. Programming Stud., 1979, 10, 128–141
  • [37] Rockafellar R.T., Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 1976, 14(5), 877–898 http://dx.doi.org/10.1137/0314056
  • [38] Shimoji K., Takahashi W., Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 2001, 5(2), 387–404
  • [39] Suzuki T, Strong convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 2005, 305(1), 227–239 http://dx.doi.org/10.1016/j.jmaa.2004.11.017
  • [40] Tada A., Takahashi W., Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, In: Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2007, 609–617
  • [41] Takahashi S., Takahashi W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2007, 331(1), 506–515 http://dx.doi.org/10.1016/j.jmaa.2006.08.036
  • [42] Takahashi S., Takahashi W., Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 2008, 69(3), 1025–1033 http://dx.doi.org/10.1016/j.na.2008.02.042
  • [43] Verma R.U., A-monotonicity and applications to nonlinear variational inclusion problems, J. Appl. Math. Stoch. Anal., 2004, 2, 193–195 http://dx.doi.org/10.1155/S1048953304403013
  • [44] Verma R.U., General system of (A,η)-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid Syst., 2007, 1(3), 326–335 http://dx.doi.org/10.1016/j.nahs.2006.07.002
  • [45] Xu H.K., Iterative algorithms for nonlinear operators, J. London Math. Soc, 2002, 66(1), 240–256 http://dx.doi.org/10.1112/S0024610702003332
  • [46] Xu H.-K., Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 2004, 298(1), 279–291 http://dx.doi.org/10.1016/j.jmaa.2004.04.059
  • [47] Yao Y, Liou Y.-C, Lee C, Wong M.-M., Convergence theorem for equilibrium problems and fixed point problems, Fixed Point Theory, 2009, 10(2), 347–363
  • [48] Yao Y., Liou Y.-C., Yao J.-C., Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory Appl. 2007, ID 64363
  • [49] Zeng L.-C., Wu S.-Y., Yao J.-C., Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math., 2006, 10(6), 1497–1514
  • [50] Zhang S.-S., Lee J.H.W., Chan C.K., Algorithms of common solutions to quasi variational inclusion and fixed point problems, Appl. Math. Mech. (English Ed.), 2008, 29(5), 571–581 http://dx.doi.org/10.1007/s10483-008-0502-y
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0021-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.