Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 9 | 3 | 603-615

Tytuł artykułu

On the extent of star countable spaces

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have arbitrary extent. It is proved that for any ω 1-monolithic compact space X, if C p(X)is star countable then it is Lindelöf.

Twórcy

autor
  • Universidade de São Paulo
  • Universidade de São Paulo
autor
  • VU University Amsterdam
  • Universidad Autónoma Metropolitana
  • Universidad Autónoma Metropolitana

Bibliografia

  • [1] Alas O.T., Junqueira L.R., Wilson R.G., Countability and star covering properties, Topology Appl., 2011, 158(4), 620–626 http://dx.doi.org/10.1016/j.topol.2010.12.012
  • [2] Arkhangel’skii A.V., Structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk, 1978, 33(6), 29–84 (in Russian)
  • [3] Arkhangel’skii A.V., Topological Function Spaces, Math. Appl. (Soviet Ser.), 78, Kluwer, Dordrecht, 1992
  • [4] Bonanzinga M., Matveev M.V., Centered-Lindelöfness versus star-Lindelöfness, Comment. Math. Univ. Carolin., 2000, 41(1), 111–122
  • [5] van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J., Star covering properties, Topology Appl., 1991, 39(1), 71–103 http://dx.doi.org/10.1016/0166-8641(91)90077-Y
  • [6] Dow A., Junnila H., Pelant J., Weak covering properties of weak topologies, Proc. Lond. Math. Soc., 1997, 75(2), 349–368 http://dx.doi.org/10.1112/S0024611597000385
  • [7] Engelking R., General Topology, Monografie Matematyczne, 60, PWN, Warszawa, 1977
  • [8] Ikenaga S., A class which contains Lindelöf spaces, separable spaces and countably compact spaces, Memoirs of Numazu College of Technology, 1983, 18, 105–108
  • [9] Ikenaga S., Somepropertiesofω-n-starspaces, Research Reports of Nara Technical College, 1987, 23, 53–57
  • [10] Ikenaga S., Topological concepts between ‘Lindelöf’ and ‘pseudo-Lindelöf’, Research Reports of Nara Technical College, 1990, 26, 103–108
  • [11] Ikenaga S., Tani T., On a topological concept between countable compactness and pseudocompactness, Memoirs of Numazu College of Technology, 1980, 15, 139–142
  • [12] Matveev M.V., A survey on star covering properties, Topology Atlas, 1998, preprint #330, available at http://at.yorku.ca/v/a/a/a/19.htm
  • [13] Matveev M.V., How weak is weak extent?, Topology Appl., 2002, 119(2), 229–232 http://dx.doi.org/10.1016/S0166-8641(01)00061-X
  • [14] van Mill J., Tkachuk V.V., Wilson R.G., Classes defined by stars and neighbourhood assignments, Topology Appl., 2007, 154(10), 2127–2134 http://dx.doi.org/10.1016/j.topol.2006.03.029
  • [15] Shakhmatov D.B., On pseudocompact spaces with point-countable base, Dokl. Akad. Nauk SSSR, 1984, 30(3), 747–751
  • [16] Tkachuk V.V., Monolithic spaces and D-spaces revisited, Topology Appl., 2009, 156(4), 840–846 http://dx.doi.org/10.1016/j.topol.2008.11.001
  • [17] Williams N.H., Combinatorial Set Theory, Stud. Logic Found. Math., 91, North-Holland, Amsterdam-New York-Oxford, 1977 http://dx.doi.org/10.1016/S0049-237X(08)70663-3

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-011-0018-y