EN
A translation along trajectories approach together with averaging procedure and topological degree are used to derive effective criteria for existence of periodic solutions for nonautonomous evolution equations with periodic perturbations. It is shown that a topologically nontrivial zero of the averaged right hand side is a source of periodic solutions for the equations with increased frequencies. Our setting involves equations on closed convex cones, therefore it enables us to study positive solutions of nonlinear parabolic partial differential equations.