Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 9 | 2 | 244-268
Tytuł artykułu

Positive periodic solutions of parabolic evolution problems: a translation along trajectories approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
A translation along trajectories approach together with averaging procedure and topological degree are used to derive effective criteria for existence of periodic solutions for nonautonomous evolution equations with periodic perturbations. It is shown that a topologically nontrivial zero of the averaged right hand side is a source of periodic solutions for the equations with increased frequencies. Our setting involves equations on closed convex cones, therefore it enables us to study positive solutions of nonlinear parabolic partial differential equations.
Opis fizyczny
  • Nicolaus Copernicus University
  • [1] Amann H., Periodic solutions of semilinear parabolic equations, In: Nonlinear Analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, 1–29
  • [2] Bader R., Kryszewski W., On the solution sets of differential inclusions and the periodic problem in Banach spaces, Nonlinear Anal., 2003, 54(4), 707–754
  • [3] Bothe D., Flow invariance for perturbed nonlinear evolution equations, Abstr. Appl. Anal., 1996, 1(4), 417–433
  • [4] Brézis H., Nirenberg L., Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1978, 5(2), 225–326
  • [5] Chen Y.Z., The generalized degree for compact perturbations of m-accretive operators and applications, Nonlinear Anal., 1989, 13(4), 393–403
  • [6] Ćwiszewski A., Topological degree methods for perturbations of operators generating compact C 0 semigroups, J. Differential Equations, 2006, 220(2), 434–477
  • [7] Ćwiszewski A., Kryszewski W., Constrained topological degree and positive solutions of fully nonlinear boundary value problems, J. Differential Equations, 2009, 247(8), 2235–2269
  • [8] Ćwiszewski A., Kryszewski W., On a generalized Poincaré-Hopf formula in infinite dimensions, Discrete Contin. Dyn. Syst., 2011, 29(3), 953–978
  • [9] Evans L.C., Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, 1998
  • [10] Granas A., The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France, 1972, 100, 209–228
  • [11] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003
  • [12] Guan Z.G., Kartsatos A.G., A degree for maximal monotone operators, In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996
  • [13] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer, Berlin-New York, 1981
  • [14] Hess P., Periodic-parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., 247, Longman Scientific & Technical, Harlow, 1991
  • [15] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, de Gruyter, Berlin, 2001
  • [16] Kartsatos A.G., Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, In: World Congress of Nonlinear Analysts, Tampa, August 19–26, 1992, de Gruyter, Berlin, 1996, 2197–2222
  • [17] Kryszewski W., Topological structure of solution sets of differential inclusions: the constrained case, Abstr. Appl. Anal., 2003, 6, 325–351
  • [18] Maciejewski M., Topological Degree for Mutivalued Perturbations of Monotone Operators with Constraints, Ph.D. thesis, Nicolaus Copernicus University, Torun, 2011 (in Polish)
  • [19] Nkashama M.N., Willem M., Periodic solutions of the boundary value problem for the nonlinear heat equation, Bull. Aust. Math. Soc., 1984, 30(1), 99–110
  • [20] Nussbaum R.D., The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 1971, 89(1), 217–258
  • [21] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, Berlin, 1983
  • [22] Showalter R.E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr., 49, American Mathematical Society, Providence, 1997
  • [23] Vejvoda O., Herrmann L., Lovicar V., Sova M., Straškraba I., Štěedrý M., Partial Differential Equations: Time-periodic Solutions, Martinus Nijhoff, Hague, 1981
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.