In this paper, we consider the well-known Rudin-Shapiro polynomials as a class of constant multiples of low-pass filters to construct a sequence of compactly supported wavelets.
[5] Byrnes J.S., Moran W., Saffari B., Smooth PONS, J. Fourier Anal. Appl., 2000, 6(6), 663–674 http://dx.doi.org/10.1007/BF02510701
[6] Chui C.K., An Introduction to Wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, 1992
[7] Cohen A., Ondelettes, analysis multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1990, 7(5), 439–459
[8] la Cour-Harbo A., On the Rudin-Shapiro transform, Appl. Comput. Harmon. Anal., 2008, 24(3), 310–328 http://dx.doi.org/10.1016/j.acha.2007.05.003
[9] Daubechies I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41(7), 909–996 http://dx.doi.org/10.1002/cpa.3160410705
[10] Daubechies I., Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, 1992
[11] Gripenberg G., Computing the joint spectral radius, Linear Algebra Appl., 1996, 234, 43–60 http://dx.doi.org/10.1016/0024-3795(94)00082-4
[12] Haar A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 1910, 69(3), 331–371 http://dx.doi.org/10.1007/BF01456326
[13] Hernández E., Weiss G., A First Course on Wavelets, Stud. Adv. Math., CRC Press, Boca Raton, 1996
[14] Hong D., Wang J., Gardner R., Real Analysis with an Introduction to Wavelets and Applications, Elsevier Academic Press, Burlington-San Diego-London, 2005
[15] Lawton W.M., Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys., 1991, 32(1), 57–61 http://dx.doi.org/10.1063/1.529093
[16] Lebedeva E.A., Protasov V.Yu., Meyer wavelets with least uncertainty constant, Math. Notes, 2008, 84(5–6), 680–687 http://dx.doi.org/10.1134/S0001434608110096
[17] Li D.F., Peng S.L., Chen H.L., Local properties of periodic cardinal interpolatory wavelets, Acta Math. Sinica (Chinese Ser.), 2001, 44(5), 947–960
[18] Mallat S.G., Multiresolution approximations and wavelet orthonormal bases of L 2(ℝ), Trans. Amer. Math. Soc., 1989, 315(1), 69–87
[19] Meyer Y., Wavelets and Operators, Cambridge Stud. Adv. Math., 37, Cambridge University Press, Cambridge, 1992
[21] Rudin W., Some theorems on Fourier coefficients, Proc. Amer. Math. Soc., 1959, 10, 855–859 http://dx.doi.org/10.1090/S0002-9939-1959-0116184-5
[22] Shapiro H.S., Extremal Problems for Polynomials and Power Series, M.I.T. Master’s Thesis, Cambridge, 1951, available at http://hdl.handle.net/1721.1/12198
[23] Villemoes L.F., Wavelet analysis of refinement equations, SIAM J. Math. Anal., 1994, 25(5), 1433–1460 http://dx.doi.org/10.1137/S0036141092228179