Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 9 | 1 | 50-56

Tytuł artykułu

Positive characteristic analogs of closed polynomials

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The notion of a closed polynomial over a field of zero characteristic was introduced by Nowicki and Nagata. In this paper we discuss possible ways to define an analog of this notion over fields of positive characteristic. We are mostly interested in conditions of maximality of the algebra generated by a polynomial in a respective family of rings. We also present a modification of the condition of integral closure and discuss a condition involving partial derivatives.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

9

Numer

1

Strony

50-56

Daty

wydano
2011-02-01
online
2010-12-30

Twórcy

  • Nicolaus Copernicus University

Bibliografia

  • [1] Arzhantsev I.V., Petravchuk A.P., Closed polynomials and saturated subalgebras of polynomial algebras, Ukrainian Math. J., 2007, 59(12), 1783–1790 http://dx.doi.org/10.1007/s11253-008-0037-4
  • [2] Ayad M., Sur les polynômes f(X, Y) tels que K[f] est intégralement fermé dans K[X, Y], Acta Arith., 2002, 105(1), 9–28 http://dx.doi.org/10.4064/aa105-1-2
  • [3] Jędrzejewicz P., Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra, 2003, 31(11), 5501–5511 http://dx.doi.org/10.1081/AGB-120023970
  • [4] Jędrzejewicz P., Eigenvector p-bases of rings of constants of derivations, Comm. Algebra, 2008, 36(4), 1500–1508 http://dx.doi.org/10.1080/00927870701869014
  • [5] Jędrzejewicz P., One-element p-bases of rings of constants of derivations, Osaka J. Math., 2009, 46(1), 223–234
  • [6] Nowicki A., On the jacobian equation J(f, g) = 0 for polynomials in k[x, y], Nagoya Math. J., 1988, 109, 151–157
  • [7] Nowicki A., Polynomial Derivations and their Rings of Constants, UMK, Toruń, 1994
  • [8] Nowicki A., Nagata M., Rings of constants for k-derivations in k[x 1, ..., x n], J. Math. Kyoto Univ., 1988, 28(1), 111–118
  • [9] Płoski A., On the irreducibility of polynomials in several complex variables, Bull. Polish Acad. Sci. Math., 1991, 39(3–4), 241–247
  • [10] Schinzel A., Polynomials with Special Regard to Reducibility, Encyclopedia Math. Appl., 77, Cambridge University Press, Cambridge, 2000

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-010-0091-7