Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Open Mathematics

2010 | 8 | 6 | 1058-1090

## Some boundedness results for systems of two rational difference equations

EN

### Abstrakty

EN
We study k th order systems of two rational difference equations $$x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - 1} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - 1} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }}, y_n = \frac{{p + \sum\nolimits_{i = 1}^k {\delta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\varepsilon _i y_{n - i} } }} {{q + \sum\nolimits_{j = 1}^k {D_j x_{n - j} + } \sum\nolimits_{j = 1}^k {E_j y_{n - j} } }} n \in \mathbb{N}$$. In particular, we assume non-negative parameters and non-negative initial conditions, such that the denominators are nonzero. We develop several approaches which allow us to extend well known boundedness results on the k th order rational difference equation to the setting of systems in certain cases.

EN

1058-1090

wydano
2010-12-01
online
2010-10-30

### Twórcy

autor
• University of Rhode Island
autor
• University of Rhode Island

### Bibliografia

• [1] Camouzis E., Kulenovic M.R.S., Ladas G., Merino O., Rational systems in the plane, J. Difference Equ. Appl., 2009, 15(3), 303–323 http://dx.doi.org/10.1080/10236190802125264
• [2] Camouzis E., Ladas G., Global results on rational systems in the plane, part 1, J. Difference Equ. Appl., 2010, 16(8), 975–1013 http://dx.doi.org/10.1080/10236190802649727
• [3] Camouzis E., Ladas G., Palladino F., Quinn E.P., On the boundedness character of rational equations, part 1, J. Difference Equ. Appl., 2006, 12(5), 503–523 http://dx.doi.org/10.1080/10236190500539311
• [4] Knopf P.M., Huang Y.S., On the boundedness character of some rational difference equations, J. Difference Equ. Appl., 2008, 14(7), 769–777 http://dx.doi.org/10.1080/10236190701852695
• [5] Lugo G., Palladino F.J., Unboundedness results for systems, Cent. Eur. J. Math., 2009, 7(4), 741–756 http://dx.doi.org/10.2478/s11533-009-0051-2
• [6] Palladino F.J., Difference inequalities, comparison tests, and some consequences, Involve, 2008, 1(1), 91–100