PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | 8 | 5 | 855-870
Tytuł artykułu

Equalities for orthogonal projectors and their operations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A complex square matrix A is called an orthogonal projector if A 2 = A = A*, where A* denotes the conjugate transpose of A. In this paper, we give a comprehensive investigation to matrix expressions consisting of orthogonal projectors and their properties through ranks of matrices. We first collect some well-known rank formulas for orthogonal projectors and their operations, and then establish various new rank formulas for matrix expressions composed by orthogonal projectors. As applications, we derive necessary and sufficient conditions for various equalities for orthogonal projectors and their operations to hold.
Wydawca
Czasopismo
Rocznik
Tom
8
Numer
5
Strony
855-870
Opis fizyczny
Daty
wydano
2010-10-01
online
2010-09-28
Twórcy
autor
Bibliografia
  • [1] Afriat S.N., Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, Math. Proc. Cambridge Philos. Soc., 1957, 53(4), 800–816 http://dx.doi.org/10.1017/S0305004100032916
  • [2] Anderson W.N.,Jr., Duffin R.J., Series and parallel addition of matrices, J. Math. Anal. Appl., 1969, 26(3), 576–594 http://dx.doi.org/10.1016/0022-247X(69)90200-5
  • [3] Baksalary J.K., Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, In: Proceedings of the 2nd International Tampere Conference in Statistics, University of Tampere, Tampere, Finland, 1987, 113–142
  • [4] Baksalary J.K., Baksalary O.M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl., 2000, 321(1–3), 3–7 http://dx.doi.org/10.1016/S0024-3795(00)00225-1
  • [5] Baksalary J.K., Styan G.P.H., Around a formula for the rank of a matrix product with some statistical applications, In: Graphs, Matrices, and Designs: Festschrift in Honor of Norman J. Pullman, Lecture Notes in Pure and Applied Mathematics, 139, Marcel Dekker, New York, 1993, 1–18
  • [6] Ben-Israel A., Greville T.N.E., Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, 2003
  • [7] Benitez J., Rakocěvić V., Applications of CS decomposition in linear combinations of two orthogonal projectors, Appl. Math. Comput., 2008, 203(2), 761–769 http://dx.doi.org/10.1016/j.amc.2008.05.053
  • [8] Benitez J., Thome N., Characterizations and linear combinations of k-generalized projectors, Linear Algebra Appl., 2005, 410, 150–159 http://dx.doi.org/10.1016/j.laa.2005.03.007
  • [9] Benitez J., Thome N., k-group periodic matrices, SIAM J. Matrix Anal. Appl., 2006, 28(1), 9–25 http://dx.doi.org/10.1137/S0895479803437384
  • [10] Bernstein D.S., Matrix Mathematics, 2nd ed., Princeton University Press, Princeton, 2009
  • [11] Berube J., Hartwig R.E., Styan G.P.H., On canonical correlations and the degrees of non-orthogonality in the threeway layout, In: Statistical Sciences and Data Analysis, Proceedings of the Third Pacific Area Statistical Conference, Makuhari (Chiba, Tokyo), Japan, December 11–13, 1991, VSP, Utrecht, 1993, 247–252
  • [12] Björck A., Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996
  • [13] Campbell S.L., Meyer C.D.,Jr., Generalized Inverses of Linear Transformations, Dover, New York, 1991
  • [14] Cheng S., Tian Y., Moore-Penrose inverses of products and differences of orthogonal projectors, Acta Sci. Math. (Szeged), 2003, 69(3–4), 533–542
  • [15] De Moor B.L.R., Golub G.H., The restricted singular value decomposition: properties and applications, SIAM J. Matrix Anal. Appl., 1991, 12(3), 401–425 http://dx.doi.org/10.1137/0612029
  • [16] Galperin A.M., Waksman Z., On pseudo-inverses of operator products, Linear Algebra Appl., 1980, 33, 123–131 http://dx.doi.org/10.1016/0024-3795(80)90101-9
  • [17] Greville T.N.E., Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors, SIAM J. Appl. Math., 1974, 26(4), 828–832 http://dx.doi.org/10.1137/0126074
  • [18] Groß J., On the product of orthogonal projectors, Linear Algebra Appl., 1999, 289(1–3), 141–150
  • [19] Izumino S., The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J., 1982, 34(1), 43–52 http://dx.doi.org/10.2748/tmj/1178229307
  • [20] Marsaglia G., Styan G.P.H., Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 1974/75, 2(3), 269–292 http://dx.doi.org/10.1080/03081087408817070
  • [21] Penrose R., A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc., 1955, 51(3), 406–413 http://dx.doi.org/10.1017/S0305004100030401
  • [22] Rao C.R., Yanai H., General definition and decomposition of projector and some applications to statistical problems, J. Statist. Plann. Inference, 1979, 3(1), 1–17 http://dx.doi.org/10.1016/0378-3758(79)90038-7
  • [23] Spitkovsky I., Once more on algebras generated by two projections, Linear Algebra Appl., 1994, 208/209, 377–395 http://dx.doi.org/10.1016/0024-3795(94)90450-2
  • [24] Spitkovsky I.M., On polynomials in two projections, Electron. J. Linear Algebra, 2006, 15, 154–158
  • [25] Tian Y., The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 2002, 25(4), 745–755 http://dx.doi.org/10.1007/s100120200015
  • [26] Tian Y., Rank equalities for block matrices and their Moore-Penrose inverses, Houston J. Math., 2004, 30(4), 483–510
  • [27] Tian Y., Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products, Appl. Math. Comput., 2004, 147(2), 581–600 http://dx.doi.org/10.1016/S0096-3003(02)00796-8
  • [28] Tian Y., More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 2004, 152(3), 675–692 http://dx.doi.org/10.1016/S0096-3003(03)00585-X
  • [29] Tian Y., Problem 753: A rank identity, solved by M. Bataille and other seven solvers, College J. Math., 2004, 35, 230
  • [30] Tian Y., On mixed-type reverse-order laws for the Moore-Penrose inverse of a matrix product, Internat. J. Math. Math. Sci., 2004, 58, 3103–3116 http://dx.doi.org/10.1155/S0161171204301183
  • [31] Tian Y., The equivalence between (AB)† = B †A † and other mixed-type reverse-order laws, Internat. J. Math. Ed. Sci. Tech., 2006, 37(3), 331–339 http://dx.doi.org/10.1080/00207390500226168
  • [32] Tian Y., Cheng S., The maximal and minimal ranks of A − BXC with applications, New York J. Math., 2003, 9, 345–362
  • [33] Tian Y., Styan G.P.H., Rank equalities for idempotent and involutory matrices, Linear Algebra Appl., 2001, 335, 101–117 http://dx.doi.org/10.1016/S0024-3795(01)00297-X
  • [34] Tian Y., Styan G.P.H., A new rank formula for idempotent matrices with applications, Comment. Math. Univ. Carolin., 2002, 43(2), 379–384
  • [35] Tian Y., Takane Y., On sum decompositions of weighted least-squares estimators for the partitioned linear model, Comm. Statist. Theory Methods, 2008, 37(1–2), 55–69 http://dx.doi.org/10.1080/03610920701648862
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-010-0057-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.