We provide combinatorial as well as probabilistic interpretations for the q-analogue of the Pochhammer k-symbol introduced by Díaz and Teruel. We introduce q-analogues of the Mellin transform in order to study the q-analogue of the k-gamma distribution.
[4] De Sole A., Kac V., On integral representations of q-gamma and q-beta functions, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9. Mat. Appl., 2005, 16, 11–29
[5] Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 2007, 15, 179–192
[6] Díaz R., Pariguan E., On the Gaussian q-distribution, J. Math. Anal. Appl., 2009, 358, 1–9 http://dx.doi.org/10.1016/j.jmaa.2009.04.046
[7] Diaz R., Pariguan E., Super, Quantum and Non-Commutative Species, Afr. Diaspora J. Math, 2009, 8, 90–130
[8] Díaz R., Teruel C, q, k-generalized gamma and beta functions, J. Nonlinear Math. Phys., 2005, 12, 118–134 http://dx.doi.org/10.2991/jnmp.2005.12.1.10
[9] George G., Mizan R., Basic Hypergeometric series, Cambridge Univ. Press, Cambridge, 1990
[10] Gessel I., Stanley R, Stirling polynomials, J. Combin. Theory Ser. A, 1978, 24, 24–33 http://dx.doi.org/10.1016/0097-3165(78)90042-0
[11] Kokologiannaki C.G., Properties and Inequalities of Generalized k-Gamma, Beta and Zeta Functions, Int. J. Contemp. Math. Sciences, 2010, 5, 653–660
[12] Kuba M., On Path diagrams and Stirling permutations, preprint available at http://arxiv4.library.cornell.edu/abs/0906.1672
[13] Mansour M., Determining the k-Generalized Gamma Function Γk(x) by Functional Equations, Int. J. Contemp. Math. Sciences, 2009, 4, 1037–1042
[14] Zeilberger D., Enumerative and Algebraic Combinatorics, In: Gowers T. (Ed.), The Princeton Companion to Mathematics, Princeton University Press, Princeton, 2008