PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | 8 | 3 | 500-536
Tytuł artykułu

On the hierarchies of higher order mKdV and KdV equations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces $$ \hat H_s^r \left( \mathbb{R} \right) $$ defined by the norm $$ \left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1 $$. Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ $$ \frac{{2j - 1}} {{2r'}} $$. The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < $$ \frac{{2j - 1}} {{2r'}} $$. The results for r = 2 - so far in the literature only if j = 1 (mKdV) or j = 2 - can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s(ℝ) for s ≥ $$ \frac{{j + 1}} {2} $$, if j is odd, and for s ≥ $$ \frac{j} {2} $$, if j is even. - The Cauchy problem for the jth equation in the KdV hierarchy with data in $$ \hat H_s^r \left( \mathbb{R} \right) $$ cannot be solved by Picard iteration, if r > $$ \frac{{2j}} {{2j - 1}} $$, independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s(ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in $$ \hat H_s^r \left( \mathbb{R} \right) $$, if 1 < r ≤ $$ \frac{{2j}} {{2j - 1}} $$ and $$ s > j - \frac{3} {2} - \frac{1} {{2j}} + \frac{{2j - 1}} {{2r'}} $$. For KdV itself the lower bound on s is pushed further down to $$ s > max\left( { - \frac{1} {2} - \frac{1} {{2r'}} - \frac{1} {4} - \frac{{11}} {{8r'}}} \right) $$, where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.
Wydawca
Czasopismo
Rocznik
Tom
8
Numer
3
Strony
500-536
Opis fizyczny
Daty
wydano
2010-06-01
online
2010-05-30
Twórcy
Bibliografia
  • [1] Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 1978, 61, 1–30 http://dx.doi.org/10.1007/BF01609465
  • [2] Avramidi I., Schimming R., A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., 2000, 219, 45–64 http://dx.doi.org/10.1002/1522-2616(200011)219:1<45::AID-MANA45>3.0.CO;2-S
  • [3] Banica V., Vega L., On the Dirac delta as initial condition for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25, 697–711 http://dx.doi.org/10.1016/j.anihpc.2007.03.007
  • [4] Cazenave T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003
  • [5] Cazenave T., Vega L., Vilela M.C., A note on the nonlinear Schrödinger equation in weak L p spaces, Commun. Contemp. Math., 2001, 3, 153–162 http://dx.doi.org/10.1142/S0219199701000317
  • [6] Chern S.S., Peng C.K., Lie groups and KdV equations, Manuscripta Math., 1979, 28, 207–217 http://dx.doi.org/10.1007/BF01647972
  • [7] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 2003, 125, 1235–1293 http://dx.doi.org/10.1353/ajm.2003.0040
  • [8] Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal., 2001, 179, 409–425 http://dx.doi.org/10.1006/jfan.2000.3687
  • [9] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on ℝ and \( \mathbb{T} \) , J. Amer. Math. Soc., 2003, 16, 705–749 http://dx.doi.org/10.1090/S0894-0347-03-00421-1
  • [10] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math., 1970, 124, 9–36 http://dx.doi.org/10.1007/BF02394567
  • [11] Foschi D., Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2005, 2, 1–24 http://dx.doi.org/10.1142/S0219891605000361
  • [12] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Korteweg-deVries equation and generalization, VI, Methods for exact solution, Comm. Pure Appl. Math., 1974, 27, 97–133 http://dx.doi.org/10.1002/cpa.3160270108
  • [13] Gardner C.S., Korteweg-de Vries equation and generalizations, IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys., 1971, 12, 1548–1551 http://dx.doi.org/10.1063/1.1665772
  • [14] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy Problem for the Zakharov System, J. Funct. Anal., 1997, 151, 384–436 http://dx.doi.org/10.1006/jfan.1997.3148
  • [15] Grünrock A., An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004, 61, 3287–3308 http://dx.doi.org/10.1155/S1073792804140981
  • [16] Grünrock A., Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005, 41, 2525–2558 http://dx.doi.org/10.1155/IMRN.2005.2525
  • [17] Grünrock A., Herr S., Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 2008, 39, 1890–1920 http://dx.doi.org/10.1137/070689139
  • [18] Grünrock A., Vega L., Local well-posedness for the modified KdV equation in almost critical \( \widehat{H_s^r } \) -spaces, Trans. Amer. Math. Soc., 2009, 361, 5681–5694 http://dx.doi.org/10.1090/S0002-9947-09-04611-X
  • [19] Hörmander L., The analysis of linear partial differential operators, II, Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257, Springer-Verlag, Berlin, 1983
  • [20] Kenig C.E., Ponce G., Vega L., Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J., 1991, 40, 33–69 http://dx.doi.org/10.1512/iumj.1991.40.40003
  • [21] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 1993, 46, 527–620 http://dx.doi.org/10.1002/cpa.3160460405
  • [22] Kenig C.E., Ponce G., Vega L., On the hierarchy of the generalized KdV equations, In: Ercolani N.M., Gabitov I.R., Levermore C.D., Serre D. (Eds.), Singular limits of dispersive waves, Proceedings of the NATO Advanced Research Workshop (École Normale Supérieure, Lyon, July 8–12, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 1994, 320, 347–356
  • [23] Kenig C.E., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 1994, 122, 157–166 http://dx.doi.org/10.2307/2160855
  • [24] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 1996, 9, 573–603 http://dx.doi.org/10.1090/S0894-0347-96-00200-7
  • [25] Kenig C.E., Ponce G., Vega L., Quadratic forms for the 1 - D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 1996, 348, 3323–3353 http://dx.doi.org/10.1090/S0002-9947-96-01645-5
  • [26] Kenig C.E., Ponce G., Vega L., On the illposedness of some canonical dispersive equations, Duke Math. J., 2001, 106, 617–633 http://dx.doi.org/10.1215/S0012-7094-01-10638-8
  • [27] Koch H., Tzvetkov N., On the local well-posedness of the Benjamin-Ono equation in H s(ℝ), Int. Math. Res. Not., 2003, 26, 1449–1464 http://dx.doi.org/10.1155/S1073792803211260
  • [28] Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries equation and generalizations, V, Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 1970, 11, 952–960 http://dx.doi.org/10.1063/1.1665232
  • [29] Kwon S., On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations, 2008, 245, 2627–2659 http://dx.doi.org/10.1016/j.jde.2008.03.020
  • [30] Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations, 2008, 01, 15 pp.
  • [31] Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 1968, 21, 467–490 http://dx.doi.org/10.1002/cpa.3160210503
  • [32] Lax P.D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 1975, 28, 141–188
  • [33] Lax P.D., Almost periodic solutions of the KdV equation, SIAM Rev., 1976, 18, 351–375 http://dx.doi.org/10.1137/1018074
  • [34] Lax P.D., Outline of a theory of the KdV equation, In: Ruggeri T. (Ed.), Recent mathematical methods in nonlinear wave propagation, Lecture Notes in Mathematics, 1640, Springer, Berlin, 1996 http://dx.doi.org/10.1007/BFb0093707
  • [35] Linares F., A higher order modified Korteweg-de Vries equation, Mat. Apl. Comput., 1995, 14, 253–267
  • [36] Matsuno Y., Bilinear transformation method, Academic Press, Inc., Orlando, FL, 1984
  • [37] Miura R.M., Korteweg-de Vries equation and generalizations, I, A remarkable explicit nonlinear transformation., J. Math. Phys., 1968, 9, 1202–1204 http://dx.doi.org/10.1063/1.1664700
  • [38] Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion, J. Math. Phys., 1968, 9, 1204–1209 http://dx.doi.org/10.1063/1.1664701
  • [39] Molinet L., Saut J.-C., Tzvetkov N., Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 2001, 33, 982–988 http://dx.doi.org/10.1137/S0036141001385307
  • [40] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18, 1212–1215 http://dx.doi.org/10.1063/1.523393
  • [41] Ovcharov E., Global regularity of nonlinear dispersive equations and Strichartz estimates, PhD thesis, University of Edinburgh, Edinburgh, UK, 2009
  • [42] Perelman G., Vega L., Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations, 2007, 235, 56–73 http://dx.doi.org/10.1016/j.jde.2006.12.018
  • [43] Pilod D., On the Cauchy problem for higher-order nonlinear dispersive equations, J. Differential Equations, 2008, 245, 2055–2077 http://dx.doi.org/10.1016/j.jde.2008.07.017
  • [44] Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations, 1993, 102, 360–381 http://dx.doi.org/10.1006/jdeq.1993.1034
  • [45] Saut J.-C., Quelques generalisations de l’equation de Korteweg - de Vries, II, J. Differential Equations, 1979, 33, 320–335 (in French) http://dx.doi.org/10.1016/0022-0396(79)90068-8
  • [46] Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 1987, 55, 699–715 http://dx.doi.org/10.1215/S0012-7094-87-05535-9
  • [47] Taggart R.J., Inhomogeneous Strichartz estimates, preprint available at arXiv:0802.4120
  • [48] Vargas A., Vega L., Global wellposedness for 1D nonlinear Schrödinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. (9), 2001, 80, 1029–1044 http://dx.doi.org/10.1016/S0021-7824(01)01224-7
  • [49] Vilela M.C., Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 2007, 359, 2123–2136 http://dx.doi.org/10.1090/S0002-9947-06-04099-2
  • [50] Zheng Y.K., Chan W.L., Gauge transformation and the higher order Korteweg-de Vries equation, J. Math. Phys., 1988, 29, 308–314 http://dx.doi.org/10.1063/1.528068
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-010-0024-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.