EN
We study unbounded Hermitian operators with dense domain in Hilbert space. As is known, the obstruction for a Hermitian operator to be selfadjoint or to have selfadjoint extensions is measured by a pair of deficiency indices, and associated deficiency spaces; but in practical problems, the direct computation of these indices can be difficult. Instead, in this paper we identify additional structures that throw light on the problem. We will attack the problem of computing deficiency spaces for a single Hermitian operator with dense domain in a Hilbert space which occurs in a duality relation with a second Hermitian operator, often in the same Hilbert space.