The aim of this paper, is to introduce the convex structure (specially, Takahashi convex structure) on modular spaces. Moreover, we are interested in proving some common fixed point theorems for non-self mappings in modular space.
[1] Ćirić L.B., A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 1974, 45, 267–237 http://dx.doi.org/10.2307/2040075
[2] Das M., Naik K.V., Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc., 1979, 77(3), 369–373 http://dx.doi.org/10.2307/2042188
[3] Gajić L., Quasi-contractive nonself mappings on Takahashi convex metric spaces, Novi Sad J. Math., 2000, 30, 41–46
[4] Jungck G., Commuting mappings and fixed point, Amer. Math. Monthly, 1976, 83, 261–263 http://dx.doi.org/10.2307/2318216
[5] Jungck G., Compatible mappings and common fixed point, Int. J. Math. Math. Sci., 1986, 9, 771–779 http://dx.doi.org/10.1155/S0161171286000935
[6] Musielak J., Orlicz W., On modular spaces, Studia Math., 1959, 18, 49–65
[7] Nakano H., Modular semi-ordered spaces, Tokyo, Japan, 1959
[8] Rakočević V., Quasi contraction nonself mappings on Banach spaces and common fixed point theorems, Publ. Math. Debrecen, 2001, 58, 451–460
[9] Ume J.S., Fixed point theorems related to Ćirić contraction principle, J. Math. Anal. Appl., 1998, 225, 630–640 http://dx.doi.org/10.1006/jmaa.1998.6030