Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2010 | 8 | 1 | 53-72

Tytuł artykułu

Efficient representations of Green’s functions for some elliptic equations with piecewise-constant coefficients


Treść / Zawartość

Warianty tytułu

Języki publikacji



Convenient for immediate computer implementation equivalents of Green’s functions are obtained for boundary-contact value problems posed for two-dimensional Laplace and Klein-Gordon equations on some regions filled in with piecewise homogeneous isotropic conductive materials. Dirichlet, Neumann and Robin conditions are allowed on the outer boundary of a simply-connected region, while conditions of ideal contact are assumed on interface lines. The objective in this study is to widen the range of effective applicability for the Green’s function version of the boundary integral equation method making the latter usable for equations with piecewise-constant coefficients.


  • Middle Tennessee State University


  • [1] Ang W.T., Clements D.L., A boundary-integral equation method for the solution of a class of crack problems, J. Elasticity, 1987, 17, 9–21
  • [2] Clements D.L., Haselgrove M.D., A boundary-integral equation method for a class of crack problems in anisotropic elasticity, Int. J. Comput. Math., 1983, 12, 267-278
  • [3] Courant R., Hilbert D., Methods of Mathematical Physics, vol.2, Interscience, New York, 1953
  • [4] Deutz J.W., Schober H.R., Boundary value problems using Green’s functions, Comput. Phys. Commun., 1983, 30, 87–91
  • [5] Dolgova I.M., Melnikov Yu.A., Construction of Green’s functions and matrices for equations and systems of elliptic type, Translation Russian PMM (J. Appl. Math. Mech.), 1978, 42, 740–746
  • [6] Duffy D., Green’s Functions with Applications, CRC Press, Boca Raton, 2001
  • [7] Embree M., Trefethen L.N., Green’s functions for multiply connected domains via conformal mapping, SIAM Rev., 1999, 41, 745–761
  • [8] Gradstein I.S., Ryzhik I.M., Tables of Intergrals, Series and Products, Academic Press, New York, 1980
  • [9] Irschik H., Ziegler F., Application of the Green’s function method to thin elastic polygonal plates, Acta Mech., 1981, 39, 155–169
  • [10] Marshall S.L., A rapidly convergent modified Green’s function for Laplace equation in a rectangular region, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1999, 155, 1739–1766
  • [11] Melnikov Yu.A., Some applications of the Green’s function method in mechanics, Internat. J. Solids Structures, 1977, 13, 1045–1058
  • [12] Melnikov Yu.A., Koshnarjova V.A., Green’s matrices and 2-D elasto-potentials for external boundary value problems, Appl. Math. Model., 1994, 18, 161–167
  • [13] Melnikov Yu.A., Shirley K.L., Matrices of Green’s type for the potential equation on a cylindrical surface joined to a hemisphere, Appl. Math. Comput., 1994, 65, 241–252
  • [14] Melnikov Yu.A., Green’s Functions in Applied Mechanics, Comput. Mech. Publications, Boston - Southampton, 1995
  • [15] Melnikov Yu.A., Influence functions for 2-D compound regions of complex configuration, Comput. Mech., 1996, 17, 297–305
  • [16] Melnikov Yu.A., Green’s function formalism extended to systems of mechanical differential equations posed on graphs, J. Eng. Math., 1998, 34, 369–386
  • [17] Melnikov Yu.A., Influence Functions and Matrices, Marcel Dekker, New York - Basel, 1999
  • [18] Melnikov Yu.A., Sheremet V.D., Some new results on the bending of a circular plate subject to point forces, Math. Mech. Solids, 2001, 6, 29–46
  • [19] Melnikov Yu.A., Matrices of Green’s type of steady-state heat conduction in multiply connected piecewise homogeneous regions, Eng. Anal. Bound. Elements, 2003, 27, 779–787
  • [20] Melnikov Yu.A., Influence functions of a point source for perforated compound plates with facial convection, J. Eng. Math., 2004, 49, 253–270
  • [21] Morse P.M., Feshbach H., Methods of Theoretical Physics, vol.2, McGraw-Hill, New York - Toronto - London, 1953
  • [22] Pan E., Han F., Green’s functions for transversely isotropic piezoelectric multilayered half-spaces, J. Eng. Math., 2004, 49, 271–288
  • [23] Roach G.F., Green’s Functions, Cambridge University Press, New York, 1982
  • [24] Sheremet V.D., Handbook of Green’s Functions and Matrices, WITPress, Southampton - Boston, 2002
  • [25] Smirnov V.I., A Course of Higher Mathematics, Pergamon Press, Oxford - New York, 1964
  • [26] Stakgold I., Green’s functions and Boundary Value Problems, John Wiley, New York, 1980
  • [27] Tewary V.K., Wagoner R.H., Hirth J.P., Elastic Green’s functions for a composite solid with a planar interface, J. Mater. Res., 1989, 4, 113–123
  • [28] Tewary V.K., Elastic Green’s function for a bimaterial composite solid containing a free surface normal to the interface, J. Mater. Res., 1991, 6, 2592–2608
  • [29] Ting T.C.T., Green’s functions for a bimaterial consisting of two orthotropic quarter planes subjected to an antiplane force and a screw dislocation, Math. Mech. Solids, 2005, 10, 197–211
  • [30] Yang B., Tewary V.K., Efficient Green’s function method of line and surface defects in multilayered elestic and piezoelastic materials, Comput. Model. Eng. Sci., 2006, 15, 165–178
  • [31] Yang B., Wong S.-C., Qu S., A micromechanics analysis of nanoscale graphite platelet-reinforced epoxy using defect Green’s function, Comput. Model. Eng. Sci., 2008, 24, 81–94

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.