Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We establish direct estimates for the q-Baskakov operator introduced by Aral and Gupta in [2], using the second order Ditzian-Totik modulus of smoothness. Furthermore, we define and study the limit q-Baskakov operator.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
199-211
Opis fizyczny
Daty
wydano
2010-02-01
online
2010-02-02
Twórcy
autor
- Babeş-Bolyai University, fzoltan@math.ubbcluj.ro
autor
- Netaji Subhas Institute of Technology, vijaygupta2001@hotmail.com
Bibliografia
- [1] Andrews G. E., Askey R., Roy R., Special functions, Cambridge Univ. Press, Cambridge, 1999
- [2] Aral A., Gupta V., Generalized q-Baskakov operators, preprint
- [3] Baskakov V. A., An example of sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 1957, 113, 249–251
- [4] Ditzian Z., Totik V., Moduli of smoothness, Springer, Berlin, 1987
- [5] Phillips G. M., Interpolation and approximation by polynomials, CMS Books in Mathematics, Vol. 14, Springer, Berlin, 2003
- [6] Wang H., Meng F., The rate of convergence of q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2005, 136, 151–158 http://dx.doi.org/10.1016/j.jat.2005.07.001
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-009-0061-0