PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2010 | 8 | 1 | 148-157
Tytuł artykułu

On set-valued cone absolutely summing maps

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spaces of cone absolutely summing maps are generalizations of Bochner spaces L p(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space $$ \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] $$ of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L 1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of $$ \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] $$ , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We also describe these set-valued cone absolutely summing maps as those that map order-Pettis integrable functions to integrably bounded set-valued functions.
Twórcy
Bibliografia
  • [1] Belanger A., Dowling P.N., Two remarks on absolutely summing operators, Math. Nachr., 1988, 136, 229–232 http://dx.doi.org/10.1002/mana.19881360115
  • [2] Chaney J., Banach lattices of compact maps, Math. Z., 1972, 129, 1–19 http://dx.doi.org/10.1007/BF01229536
  • [3] Diestel J., An elementary characterization of absolutely summing operators, Math. Ann., 1972, 196, 101–105 http://dx.doi.org/10.1007/BF01419607
  • [4] Diestel J., Uhl J.J., Vector measures, A.M.S. Surveys, Vol. 15, Providence, Rhode Island, 1977
  • [5] Dinculeanu N., Integral representation of linear operators, Stud. Cerc. Mat., 1966, 18, 349–385, 483–536
  • [6] Hiai F., Umegaki H., Integrals, conditional expectations, and martingales of multivalued functiones, Journal of Multivariate Analysis, 1977, 7, 149–182 http://dx.doi.org/10.1016/0047-259X(77)90037-9
  • [7] Jeurnink G.A.M., Integration of functions with values in a Banach lattice, PhD Thesis, University of Nijmegen, The Netherlands, 1982
  • [8] Labuschagne C.C.A., Pinchuck A.L., van Alten C.J., A vector lattice version of Rådström’s embedding theorem, Quaestiones Mathematicae, 2007, 30, 285–308
  • [9] Li S., Ogura Y., Kreinovich V., Limit theorems and applications of set-valued and fuzzy set-valued random variables, Kluwer Acadenic Press, Dordrecht-Boston-London, 2002
  • [10] Marraffa V., A characterization of absolutely summing operators by means of McShane integrable functions, J. Math. Anal. Appl., 2004, 239, 71–78 http://dx.doi.org/10.1016/j.jmaa.2003.12.029
  • [11] Meyer-Nieberg P., Banach lattices, Springer Verlag, Berlin-Heidelberg-New York, 1991
  • [12] Rådström H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 1952, 3, 165–169 http://dx.doi.org/10.2307/2032477
  • [13] Rodríguez J., Absolutely summing operators and integration of vector-valued functions, J. Math. Anal. Appl., 2006, 316, 579–600 http://dx.doi.org/10.1016/j.jmaa.2005.05.001
  • [14] Schaefer H.H., Banach lattices and positive operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974
  • [15] Zaanen A.C., Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin Heidelberg New York, 1997
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-009-0059-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.