Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 7 | 4 | 694-716
Tytuł artykułu

Positive and maximal positive solutions of singular mixed boundary value problem

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper is concerned with existence results for positive solutions and maximal positive solutions of singular mixed boundary value problems. Nonlinearities h(t;x;y) in differential equations admit a time singularity at t=0 and/or at t=T and a strong singularity at x=0.
Opis fizyczny
  • Department of Mathematical Analysis, Faculty of Science, Palacký University, Olomouc, Czech Republic,
  • [1] Agarwal R.P., O’Regan D., Singular differential and integral equations with applications, Kluwer, Dordrecht, 2003
  • [2] Agarwal R.P., O’Regan D., Singular problems motivated from classical upper and lower solutions, Acta Math. Hungar., 2003, 100, 245–256[Crossref]
  • [3] Agarwal R.P., O’Regan D., Staněek S., Existence of positive solutions for boundary-value problems with singularities in phase variables, Proc. Edinburgh Math. Soc., 2004, 47, 1–13[Crossref]
  • [4] Agarwal R.P., Staněek S., Nonnegative solutions of singular boundary value problems with sign changing nonlinearities, Comput. Math. Appl., 2003, 46, 1827–1837[Crossref]
  • [5] Bartle R.G., A modern theory of integrations, AMS Providence, Rhode Island, 2001
  • [6] Berestycki H., Lions P.L., Peletier L.A., An ODE approach to the existence of positive solutions for semilinear problems in ℝN, Indiana Univ. Math. J., 1981, 30, 141–157[Crossref]
  • [7] Bertsch M., Passo R.D., Ughi M., Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 1990, 320, 779–798[Crossref]
  • [8] Bertsch M., Ughi M., Positive properties of viscosity solutions of a degenerate parabolic equation, Nonlinear Anal., 1990, 14, 571–592[Crossref]
  • [9] Cabada A., Cid J.A., Extremal solutions of ϕ-Laplacian-diffusion scalar problems with nonlinear functional boundary conditions in a unified way, Nonlinear. Anal., 2005, 63, 2515–2524[Crossref]
  • [10] Cabada A., Nieto J.J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput., 1990, 40, 135–145[Crossref]
  • [11] Cabada A., Pouso R.P., Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal., 2000, 42, 1377–1396[Crossref]
  • [12] Carl S., Heikkilä S., Nonlinear differential equations in ordered spaces, Chapman & Hall/CRC, Monographs and Surveys in Pure and Applied Mathematics III, 2000
  • [13] Castro A., Sudhasree G., Uniqueness of stable and unstable positive solutions for semipositone problems, Nonlinear Anal., 1994, 22, 425–429[Crossref]
  • [14] Cherpion M., De Coster C., Habets P., Monotone iterative method for boundary value problem, Differential integral equations, 1999, 12, 309–338
  • [15] Cid J.A., On extremal fixed point in Schauder’s theorem with application to differential equations, Bull. Belg. Math. Soc. Simon Stevin, 2004, 11, 15–20
  • [16] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in ℝN, Adv. Math., Suppl. Stud. 7A, 1981, 369–402
  • [17] Kelevedjiev P., Nonnegative solutions to some singular second-order boundary value problems, Nonlinear Anal., 1999, 36, 481–494[Crossref]
  • [18] Kiguradze I., Some optimal conditions for solvability of two-point singular boundary value problems, Funct. Differ. Equ., 2003, 10, 259–281
  • [19] Kiguradze I.T., Shekhter B.L., Singular boundary value problems for second order ordinary differential equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 1987, 30, 105–201 (in Russian), English translation: Journal of Soviet Mathematics, 1988, 43, 2340–2417
  • [20] Lang S., Real and functional analysis, Springer, New York, 1993
  • [21] O’Regan D., Existence of positive solutions to some singular and nonsingular second order boundary value problems, J. Differential Equations, 1990, 84, 228–251[Crossref]
  • [22] Rachůnková I., Singular mixed boundary value problem, J. Math. Anal. Appl., 2006, 320, 611–618[Crossref]
  • [23] Rachůnková I., Staněk S., Connections between types of singularities in differential equations and smoothness of solutions for Dirichlet BVPs, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal., 2003, 10, 209–222
  • [24] Rachůnková I., Staněk S., Tvrdý M., Singularities and laplacians in boundary value problems for nonlinear differential equations, In: Cañada A., Drábek P., Fonda A. (Eds.), Handbook of differential equations, Ordinary differential equations, Vol. 3, 607–723, Elsevier, 2006
  • [25] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions, Pacific J. Math., 1996, 172, 255–277
  • [26] Thompson H.B., Second order ordinary differential equations with fully nonlinear two point boundary conditions II, Pacific J. Math., 1996, 172, 259–297
  • [27] Wang J., Gao W., A note on singular nonlinear two-point boundary value problems, Nonlinear Anal., 2000, 39, 281–287[Crossref]
  • [28] Zheng L., Su X., Zhang X., Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium, Int. J. Pure Appl. Math., 2005, 19, 541–552
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.