In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes can be smoothed. We generalise their proof, and obtain smoothability of rational m-ropes for m ≥ 3.
School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland, UK
Bibliografia
[1] Arbarello E., Cornalba M., Su una congettura di Petri, Comm. Math. Helv., 1981, 56, 1–38 http://dx.doi.org/10.1007/BF02566195[Crossref]
[2] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of algebraic curves I, Springer, Berlin, 1985
[3] Ballico E., A remark on linear series of general k-gonal curves, Boll. Unione Mat. Ital. (7), 1989, 3-A, 195–197
[4] Ballico E., Scrollar invariants of smooth projective curves, J. Pure Appl. Algebra, 2003, 166(3), 239–246 http://dx.doi.org/10.1016/S0022-4049(01)00023-8[Crossref]
[5] Bayer D., Eisenbud D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc, 1995, 347(3), 719–756 http://dx.doi.org/10.2307/2154871[Crossref]
[6] Chandler K.A., Geometry of dots and ropes, Trans. Amer. Math. Soc, 1995, 347(3), 767–784 http://dx.doi.org/10.2307/2154873[Crossref]
[7] Coppens M., Martens G., Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg, 1999, 69, 347–371 http://dx.doi.org/10.1007/BF02940885[Crossref]
[8] Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space curves, Math. Ann., 1981, 256(4), 453–463 http://dx.doi.org/10.1007/BF01450541[Crossref]
[9] Gallego F.J., González M., Purnaprajna B.P., Deformation of finite morphisms and smoothing of ropes, Compos. Math., 2008, 144(3), 673–688 http://dx.doi.org/10.1112/S0010437X07003326[WoS][Crossref]
[10] González M., Smoothing of ribbons over curves, J. Reine Angew. Math., 2006, 591, 201–213
[11] Hartshorne R., Cohomological dimension of algebraic varieties, Ann. of Math., 1968, 88(3), 402–450 http://dx.doi.org/10.2307/1970720[Crossref]
[12] Mumford D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Oxford University Press, London 1970
[13] Sacchiero G., Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 1980, 26, 33–40
[14] Schreyer F.-O., Syzygies of canonical curves and special linear series, Math. Ann., 1986, 275(1), 105–137 http://dx.doi.org/10.1007/BF01458587[Crossref]