Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 7 | 3 | 493-505

Tytuł artykułu

Approximating real Pochhammer products: a comparison with powers

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Accurate estimates of real Pochhammer products, lower (falling) and upper (rising), are presented. Double inequalities comparing the Pochhammer products with powers are given. Several examples showing how to use the established approximations are stated.

Twórcy

autor
  • University of Ljubljana

Bibliografia

  • [1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, Dover Publications, N.Y., 1974
  • [2] Atkinson K.E., An introduction to numerical analysis, J. Wiley & Sons, N.Y., 1989
  • [3] Davis P.J., Rabinowitz P., Methods of numerical integration, Academic Press, Chestnut Hill, MA., 1984
  • [4] Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 2007, 15, 179–192
  • [5] Graham R.L., Knuth D.E., Patashnik O., Concrete mathematics, Addison-Wesley, Reading, MA, 1994
  • [6] Kahn P.B., Mathematical methods for scientists and engineers, John Wiley & Sons, N.Y., 1990.
  • [7] Knopp K., Theory and applications of infinite series, Hafner, N.Y., 1971
  • [8] Lampret V., The Euler-Maclaurin and Taylor formulas: Twin, elementary derivations, Math. Mag., 2001, 74, 109–122
  • [9] Lampret V., An invitation to Hermite’s integration and summation: A Comparison between Hermite’s and Simpson’s rules, SIAM Rev., 2004, 46, 311–328 http://dx.doi.org/10.1137/S0036144502416308
  • [10] Spivey M.Z., The Euler-Maclaurin formula and sums of powers, Math. Mag., 2006, 79, 61–65 http://dx.doi.org/10.2307/27642905
  • [11] Wolfram S., Mathematica, Version 6.0, Wolfram Research, Inc., 1988–2008

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-009-0036-1