Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 7 | 3 | 463-478

Tytuł artykułu

Representation and duality for Hilbert algebras

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper we introduce a special kind of ordered topological spaces, called Hilbert spaces. We prove that the category of Hilbert algebras with semi-homomorphisms is dually equivalent to the category of Hilbert spaces with certain relations. We restrict this result to give a duality for the category of Hilbert algebras with homomorphisms. We apply these results to prove that the lattice of the deductive systems of a Hilbert algebra and the lattice of open subsets of its dual Hilbert space, are isomorphic. We explore how this duality is related to the duality given in [6] for finite Hilbert algebras, and with the topological duality developed in [7] for Tarski algebras.

Wydawca

Czasopismo

Rocznik

Tom

7

Numer

3

Strony

463-478

Opis fizyczny

Daty

wydano
2009-09-01
online
2009-08-12

Twórcy

  • CONICET and Universidad Nacional del Centro
  • CONICET and Universidad Nacional del Centro
  • Universidad Nacional del Comahue

Bibliografia

  • [1] Balbes R., Dwinger Ph., Distributive lattices, University of Missouri Press, 1974
  • [2] Busneag D., A note on deductive systems of a Hilbert algebra, Kobe J. Math., 1985, 2, 29–35
  • [3] Celani S.A., A note on homomorphism of Hilbert algebras, Int. J. Math. Math. Sci., 2002, 29(1), 55–61 http://dx.doi.org/10.1155/S0161171202011134
  • [4] Celani S.A., Representation of Hilbert algebras and implicative Semilattices, Cent. Eur. J. Math., 2003, 1(4), 561–572 http://dx.doi.org/10.2478/BF02475182
  • [5] Celani S.A., Modal Tarski algebras, Reports on Mathematical Logic, 2005, 39, 113–126
  • [6] Celani S.A., Cabrer L.M., Duality for finite Hilbert algebras, Discrete Math., 2005, 305, 74–99 http://dx.doi.org/10.1016/j.disc.2005.09.002
  • [7] Celani S.A., Cabrer L.M., Topological duality for Tarski algebras, Algebra Universalis, 2008, 58, 73–94 http://dx.doi.org/10.1007/s00012-007-2041-1
  • [8] Chajda I., Halaš P., Zedník J., Filters and annihilators in implication algebras, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica, 1998, 37, 41–45
  • [9] Diego A., Sur les algèbres de Hilbert, Hermann, Paris, Collection de Logique Mathématique, Sér. A, 1966, 21 (in French)
  • [10] Koppelberg S., General theory of Boolean algebras, In: Monk D., Bonnet R. (Eds.), Handbook of Boolean Algebras, Vol. 1, North Holland, Amsterdam, 1989

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-009-0032-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.