EN
In this paper we introduce a special kind of ordered topological spaces, called Hilbert spaces. We prove that the category of Hilbert algebras with semi-homomorphisms is dually equivalent to the category of Hilbert spaces with certain relations. We restrict this result to give a duality for the category of Hilbert algebras with homomorphisms. We apply these results to prove that the lattice of the deductive systems of a Hilbert algebra and the lattice of open subsets of its dual Hilbert space, are isomorphic. We explore how this duality is related to the duality given in [6] for finite Hilbert algebras, and with the topological duality developed in [7] for Tarski algebras.