EN
The pointwise approximation properties of the Bézier variant of the MKZ-Kantorovich operators $$ \hat M_{n,\alpha } (f,x) $$ for α ≥ 1 have been studied in [Comput. Math. Appl., 39 (2000), 1-13]. The aim of this paper is to deal with the pointwise approximation of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the other case 0 < α < 1. By means of some new techniques and new inequalities we establish an estimate formula on the rate of convergence of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the case 0 < α < 1. In the end we propose the q-analogue of MKZK operators.