Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 7 | 3 | 452-462
Tytuł artykułu

A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II

Treść / Zawartość
Warianty tytułu
Języki publikacji
This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.
  • [1] Besicovitch A.S., On the linear independence of fractional powers of integers, J. London Math. Soc., 1940, 15, 3–6
  • [2] Chung D., Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds II, In: Heath-Brown D.R. et al (Eds.), Proceedings of the session in analytic number theory and Diophantine equations ( January–June 2002, Bonn, Germany) Bonner Mathematische Schriften, 2003, 360
  • [3] Corrádi K., Kátai I., A comment on K.S. Gangadharan’s paper “Two classical lattice point problems”, Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Kozl., 1967, 17, 89–97 (in Hungarian)
  • [4] Cramér H., Über zwei Sätze von Herrn G.H. Hardy, Math. Z., 1922, 15, 201–210
  • [5] Drmota M., Tichy R.F., Sequences, discrepancies, and applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997
  • [6] Gangadharan K.S., Two classical lattice point problems, Math. Proc. Cambridge Philos. Soc., 1961, 57, 699–721
  • [7] Gordon C.S., Wilson E.N., The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 1986, 33, 253–271
  • [8] Graham S.W., Kolesnik G., Van der Corput’s method of exponential sums, Cambridge University Press, 1991
  • [9] Hafner J.L., New omega results for two classical lattice point problems, Invent. Math., 1981, 63, 181–186
  • [10] Hardy G.H., On the expression of a number as the sum of two squares, Quart. J. Math., 1915, 46, 263–283
  • [11] Hörmander L., The spectral function of an elliptic operator, Acta Math., 1968, 121, 193–218
  • [12] Huxley M.N., Area, lattice points, and exponential sums, LMS Monographs, New Ser., Oxford, 1996
  • [13] Huxley M.N., Exponential sums and lattice points III, Proc. London Math. Soc., 2003, 87, 591–609
  • [14] Ivic A., Krätzel E., Kühleitner M., Nowak W.G., Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, In: Schwarz W., Steuding J. (Eds.), Proceedings Conference on Elementary and Analytic Number Theory ELAZ’04 (24–28 May 2006, Mainz, Germany), Franz Steiner Verlag, 2006, 89–128
  • [15] Iwaniec H., Kowalski E., Analytic number theory, AMS Coll. Publ. 53, Providence, R.I., 2004
  • [16] Khosravi M., Spectral statistics for Heisenberg manifolds, Ph.D. thesis, McGill University, Montreal, Canada, 2005
  • [17] Khosravi M., Petridis Y.N., The remainder in Weyl’s law for n-dimensional Heisenberg manifolds, Proc. Amer. Math. Soc., 2005, 133, 3561–3571
  • [18] Khosravi M., Toth J.A., Cramer’s formula for Heisenberg manifolds, Ann. Inst. Fourier, 2005, 55, 2489–2520
  • [19] Krätzel E., Lattice points, Berlin, Kluwer, 1988
  • [20] Krätzel E., Analytische Funktionen in der Zahlentheorie, Stuttgart-Leipzig-Wiesbaden, Teubner, 2000 (in German)
  • [21] Nowak W.G., A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, Arch. Math. (Basel), preprint available at
  • [22] Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds, J. Differential Geom., 2002, 60, 455–483
  • [23] Soundararajan K., Omega results for the divisor and circle problems, Int. Math. Res. Not., 2003, 36, 1987–1998
  • [24] Vaaler J.D., Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 1985, 12, 183–216
  • [25] Zhai W., On the error term in Weyl’s law for the Heisenberg manifolds, Acta Arith., 2008, 134, 219–257
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.