Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 7 | 3 | 429-441
Tytuł artykułu

The incidence class and the hierarchy of orbits

Treść / Zawartość
Warianty tytułu
Języki publikacji
R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂ $$ \bar \eta $$. Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂ $$ \bar \eta $$ for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity holds for all orbits. In other words in these cases the incidence classes completely determine the hierarchy of the orbits. We also study the case of singularities where positivity doesn’t hold for all orbits.
Opis fizyczny
  • [1] Arnol’d V.I., Guseĭn-Zade S.M., Varchenko A.N., Singularities of differentiable maps II, Monographs in Mathematics, Birkhauser Boston Inc., Boston, MA, 1988
  • [2] Buch A.S., Rimanyi R., Specializations of Grothendieck polynomials, C. R. Math. Acad. Sci. Paris, 2004, 339(1), 1–4
  • [3] Edidin D., Graham W., Equivariant intersection theory, Invent. Math., 1998, 131(3), 595–634
  • [4] Fehér L.M., Némethi A., Rimányi R., The degree of the discriminant of irreducible representations, J. Algebraic Geometry, 2008, 17, 751–780
  • [5] Fehér L., Rimányi R., Classes of degeneracy loci for quivers: the Thom polynomial point of view, Duke Math. J., 2002, 114(2), 193–213
  • [6] Fehér L.M., Rimányi R., Thom polynomials with integer coefficients, Illinois J. Math., 2002, 46(4), 1145–1158
  • [7] Fehér L.M., Rimányi R., Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces, Cent. Eur. J. Math., 2003, 1(4), 418–434
  • [8] Fehér L.M., Rimányi R., Calculation of Thom polynomials and other cohomological obstructions for group actions, In: Real and complex singularities, Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, 354, 69–93
  • [9] Fulton W., Young tableaux, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997
  • [10] Goldin R.F., The cohomology ring of weight varieties and polygon spaces, Adv. in Math., 2001, 160, 175–204
  • [11] Kazarian M.É., Characteristic classes of singularity theory, In: The Arnold-Gelfand mathematical seminars, pages, Birkhäuser Boston, Boston, MA, 1997, 325–340
  • [12] Knutson A., Miller E., Gröbner geometry of Schubert polynomials, Annals of Math., 2005, 2(3), 1245–1318
  • [13] Knutson A., Miller E., Shimozono M., Four positive formulae for type a quiver polynomials, Invent. Math., 2006, 166, 229–325
  • [14] Knutson A., Shimozono M., Kempf collapsing and quiver loci, preprint available at
  • [15] Kumar S., The nil hecke ring and singularity of Schubert varieties, Invent. Math., 1996, 123(3), 471–506
  • [16] Lascoux A., Schützenberger M.-P., Décompositions dans l’algébre des differences divisées, Discrete Math., 1992, 99, 165–179
  • [17] Mather J., Stability of C ∞ mappings. VI. the nice dimensions, In: Liverpool Singularities-Symposium I, number 192 in SLNM, 1971, 207–253
  • [18] Miller E., Sturmfels B., Combinatorial commutative algebra, Springer, Berlin, 2004
  • [19] Patakfalvi Z., Orbit structures and incidence, Master’s thesis, Eotvos University, Budapest, 2006
  • [20] Porteous I., Simple singularities of maps, In: Liverpool Singularities-Symposium I, number 192 in SLNM, 1971, 286–307
  • [21] Rimányi R., Generalized Pontrjagin-Thom construction for singular maps, PhD thesis, Eotvos University, Budapest, 1999
  • [22] Rimányi R., Thom polynomials, symmetries and incidences of singularities, Invent. Math., 2001, 143(3), 499–521
  • [23] Wall C.T.C., Nets of conics, Math. Proc. Cambridge Philos. Soc., 1977, 81(3), 351–364
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.