In this paper we prove two fixed point theorems for generalized contractions with constants in complete metric space, which are generalizations of very recent results of Kikkawa and Suzuki.
[1] Banach S., Sur les óperations dans les ensembles abstraits et leur aplication aux écuations intégrales, Fund. Math., 1922, 3, 133–181 (in French)
[2] Chatterjea S. K., Fixed point theorems, Comptes rendus de l’Académie Bulgare des Sciences, 1972, 25, 727–730
[3] Ćirić Lj. B., Generalized contractions and fixed point theorem, Publ. Inst. Math., 1971, 12, 19–26
[4] Kannan R., Some results on fixed points, Bull. Calcutta Math. Soc., 1968, 60, 71–76
[5] Kikkawa M., Suzuki T., Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Analysis, 69, 2008, 2942–2949 http://dx.doi.org/10.1016/j.na.2007.08.064
[6] Kikkawa M., Suzuki T., Some similarity between contractions and Kannan mappings, Fixed Point Theory and Applications, 2008, ID649749, 8 pages
[7] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6
[8] Popescu O., Fixed point theorems in metric spaces, Bull. of Transilvania Univ., 2008, 50, 479–482
[9] Suzuki T., A generalized Banach contraction principle which characterizes metric completness, Proc. Amer. Math. Soc., 2008, 136, 1861–1869 http://dx.doi.org/10.1090/S0002-9939-07-09055-7
[10] Suzuki T., Kikkawa M., Some remarks on a recent generalization of the Banach contraction principle, Proceedings of the Eighth International Conference on Fixed Point Theory and its Applications, Yokohama Publishers, 2008, 151–161
[11] Zamfirescu T., Fixed point theorems in metric spaces, Arch. Math., 1972, 23, 292–298 http://dx.doi.org/10.1007/BF01304884