PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | 7 | 2 | 357-362
Tytuł artykułu

I-convergence theorems for a class of k-positive linear operators

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain some approximation theorems for k- positive linear operators defined on the space of analytical functions on the unit disc, via I-convergence. Some concluding remarks which includes A-statistical convergence are also given.
Twórcy
  • Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Gazi Magusa, Mersin, Turkey, mehmetali.ozarslan@emu.edu.tr
Bibliografia
  • [1] Devore R.A., Lorentz G.G., Constructive approximation, Springer-Verlag, Berlin, 1993
  • [2] Duman O., A Korovkin type approximation theorems via I-convergence, Czechoslovak Math. J., 2007, 57, 367–375 http://dx.doi.org/10.1007/s10587-007-0065-5[Crossref][WoS]
  • [3] Duman O., Statistical approximation theorems by k-positive linear operators, Arch. Math. (Basel), 2006, 86, 569–576 [Crossref]
  • [4] Fast H., Sur la convergence statistique, Colloquium Math., 1951, 2, 241–244
  • [5] Freedman A.R., Sember J.J., Densities and summability, Pacific J. Math., 1981, 95, 293–305
  • [6] Fridy J.A., On statistical convergence, Analysis, 1985, 5, 301–313 [Crossref]
  • [7] Fridy J.A., Miller H.I., A matrix characterization of statistical convergence, Analysis, 1991, 11, 59–66 [Crossref]
  • [8] Fridy J.A., Orhan C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 1997, 125, 3625–3631 http://dx.doi.org/10.1090/S0002-9939-97-04000-8[Crossref]
  • [9] Gadjiev A.D., Linear k-positive operators in a space of regular functions and theorems of P. P. Korovkin type, Izv. Akad. Nauk Azerbaĭdžan. SSR Ser. Fiz.-Tehn. Mat. Nauk, 1974, 5, 49–53 (Russian)
  • [10] Kolk E., The statistical convergence in Banach spaces, Tartu Ül. Toimetised No. 928, 1991, 41–52
  • [11] Kostyrko P., Šalát T., Wilczyński W., I-convergence, Real Anal. Exchange, 2000/2001, 26, 669–685
  • [12] Kostyrko P., Mačaj M., Šalát T., Sleziak M., I-convergence and extremal I-limit points, Math. Slovaca, 2005, 55, 443–464
  • [13] Miller H.I., A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 1995, 347, 1811–1819 http://dx.doi.org/10.2307/2154976[Crossref]
  • [14] Özarslan M.A., Aktuğlu H., Local approximation properties of certain class of linear positive operators via I-convergence, Cent. Eur. J. Math., 2008, 6, 281–286 http://dx.doi.org/10.2478/s11533-008-0125-6[Crossref][WoS]
  • [15] Steinhaus H., Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 1951, 2, 73–74
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-009-0017-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.