PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | 7 | 2 | 200-205
Tytuł artykułu

On the Drazin index of regular elements

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that the existence of the group inverse a # of a ring element a is equivalent to the invertibility of a 2 a − + 1 − aa −, independently of the choice of the von Neumann inverse a − of a. In this paper, we relate the Drazin index of a to the Drazin index of a 2 a − + 1 − aa −. We give an alternative characterization when considering matrices over an algebraically closed field. We close with some questions and remarks.
Wydawca
Czasopismo
Rocznik
Tom
7
Numer
2
Strony
200-205
Opis fizyczny
Daty
wydano
2009-06-01
online
2009-05-24
Twórcy
Bibliografia
  • [1] Castro González N., Additive perturbation results for the Drazin inverse, Linear Algebra Appl., 2005, 397, 279–297 http://dx.doi.org/10.1016/j.laa.2004.11.001[Crossref][WoS]
  • [2] Cline R.E., An application of representation of a matrix, MRC Technical Report, 592, 1965
  • [3] Drazin M.P., Pseudo inverses in associative rings and semigroups, Amer. Math. Monthly, 1958, 65, 506–514 http://dx.doi.org/10.2307/2308576[Crossref]
  • [4] Hartwig R.E., Luh J., On finite regular rings, Pacific J. Math., 1977, 69, 73–95
  • [5] Hartwig R.E., Patricio P., A note on power bounded matrices, preprint
  • [6] Hartwig R.E., Shoaf J., Group inverses and Drazin inverse of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. Ser. A, 1977, 24, 10–34 http://dx.doi.org/10.1017/S1446788700020036[Crossref]
  • [7] Hartwig R.E., Wang G., Wei Y., Some additive results on Drazin inverses, Linear Algebra Appl., 2001, 322, 207–217 http://dx.doi.org/10.1016/S0024-3795(00)00257-3[Crossref]
  • [8] Patricio P., Puystjens R., Generalized invertibility in two semigroups of a ring, Linear Algebra Appl., 2004, 377, 125–139 http://dx.doi.org/10.1016/j.laa.2003.08.004[Crossref]
  • [9] Puystjens R., Hartwig R.E., The group inverse of a companion matrix, Linear and Multilinear Algebra, 1997, 43, 137–150 http://dx.doi.org/10.1080/03081089708818521[Crossref]
  • [10] Roman S., Advanced linear algebra, Graduate Texts in Mathematics 135, Springer, New York, 2005
  • [11] Schmoeger C., On Fredholm properties of operator products, Math. Proc. R. Ir. Acad. 103A, 2003, 2, 203–208 http://dx.doi.org/10.3318/PRIA.2003.103.2.203[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-009-0015-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.