Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2009 | 7 | 2 | 272-298

Tytuł artykułu

∞-jets of diffeomorphisms preserving orbits of vector fields

Treść / Zawartość

Warianty tytułu

Języki publikacji



Let F be a C ∞ vector field defined near the origin O ∈ ℝn, F(O) = 0, and (Ft) be its local flow. Denote by the set of germs of orbit preserving diffeomorphisms h: ℝn → ℝn at O, and let , (r ≥ 0), be the identity component of with respect to the weak Whitney Wr topology. Then contains a subset consisting of maps of the form Fα(x)(x), where α: ℝn → ℝ runs over the space of all smooth germs at O. It was proved earlier by the author that if F is a linear vector field, then = . In this paper we present a class of examples of vector fields with degenerate singularities at O for which formally coincides with , i.e. on the level of ∞-jets at O. We also establish parameter rigidity of linear vector fields and “reduced” Hamiltonian vector fields of real homogeneous polynomials in two variables.










Opis fizyczny




  • Topology Department, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine


  • [1] Abe K., Fukui K., On the structure of the groups of equivariant diffeomorphisms of G-manifolds with codimension one orbit, Topology, 2001, 40, 1325–1337[Crossref]
  • [2] Abe K., Fukui K., On the first homology of automorphism groups of manifolds with geometric structures, Cent. Eur. J. Math., 2005, 3, 516–528[Crossref]
  • [3] Banyaga A., On the structure of the group of equivariant diffeomorphisms, Topology, 1977, 16, 279–283[Crossref]
  • [4] Camacho C., Neto A.L., Orbit preserving diffeomorphisms and the stability of Lie group actions and singular foliations, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), 82–103, Lecture Notes in Math., 597, Springer, Berlin, 1977
  • [5] Chacon R.V., Change of velocity in flows, J. Math. Mech., 1966, 16, 417–431
  • [6] Damjanović D., Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions, J. Mod. Dyn., 2007, 1, 665–688 [WoS][Crossref]
  • [7] Einsiedler M., Fisher T., Differentiable rigidity for hyperbolic toral actions, Israel J. Math., 2007, 157, 347–377[Crossref]
  • [8] Golubitsky M., Guillemin V., Stable mappings and their singularities, Graduate Texts in Mathematics, 14, Springer-Verlag, 1973
  • [9] Gutiérrez C., De Melo W., The connected components of Morse-Smale vector fields on two manifolds, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), 230–251, Lecture Notes in Math., 597, Springer, Berlin, 1977
  • [10] Hart D., On the smoothness of generators, Topology, 1983, 22, 357–363[Crossref]
  • [11] Hirsch M., Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, 1976
  • [12] Hopf E., Ergodentheorie, Berlin, 1937 (in German)
  • [13] Hurder S., A survey of rigidity theory for Anosov actions, In: Differential topology, foliations, and group actions, Rio de Janeiro, 1992, Contemp. Math., 161, Amer. Math. Soc., Providence, 1994
  • [14] Kanai M., A new approach to the rigidity of discrete group actions, Geom. Funct. Anal., 1996, 6, 943–1056[Crossref]
  • [15] Katok A., Spatzier R.J., First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math., 1994, 79, 131–156[Crossref]
  • [16] Katok A., Spatzier R.J., Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 1997, 216, 287–314
  • [17] Kochergin A.V., Change of time in flows and mixing, Izv. Akad. Nauk SSSR Ser. Mat., 1973, 37, 1275–1298 (in Russian)
  • [18] Kowada M., The orbit-preserving transformation groups associated with a measurable flow, J. Math. Soc. Japan, 1972, 24, 355–373[Crossref]
  • [19] Maksymenko S., Smooth shifts along trajectories of flows, Topology Appl., 2003, 130, 183–204[WoS][Crossref]
  • [20] Maksymenko S., Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom., 2006, 29, 241–285[Crossref]
  • [21] Maksymenko S., Stabilizers and orbits of smooth functions, Bull. Sci. Math., 2006, 130, 279–311[Crossref]
  • [22] Maksymenko S., Hamiltonian vector fields of homogeneous polynomials on the plane, Topological problems and relative questions, Proceedings of Institute of Mathematics of Ukrainian NAS, 2006, 3, 269–308 (in Ukrainian)
  • [23] Mather J., Differentiable invariants, Topology, 1977, 16, 145–155[Crossref]
  • [24] Matsumoto Sh., Mitsumatsu Y., Leafwise cohomology and rigidity of certain Lie group actions, Ergodic Theory Dynam. Systems, 2003, 23, 1839–1866[Crossref]
  • [25] Ornstein D.S., Smorodinsky M., Continuous speed changes for flows, Israel J. Math., 1978, 31, 161–168[Crossref]
  • [26] Palis J., de Melo W., Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982
  • [27] Parry W., Cocycles and velocity changes, J. London Math. Soc., 1972, 5, 511–516[Crossref]
  • [28] Rybicki T., Isomorphisms between leaf preserving diffeomorphism groups, Soochow J. Math., 1996, 22, 525–542
  • [29] Rybicki T., Homology of the group of leaf preserving homeomorphisms, Demonstratio Math., 1996, 29, 459–464
  • [30] Rybicki T., On commutators of equivariant homeomorphisms, Topology Appl., 2007, 154, 1561–1564[Crossref][WoS]
  • [31] Schwarz G.W., Smooth functions invariant under the action of a compact Lie group, Topology, 1975, 14, 63–68[Crossref]
  • [32] Schwarz G.W., Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., 1980, 51, 37–135[Crossref]
  • [33] dos Santos N.M., Parameter rigid actions of the Heisenberg groups, Ergodic Theory Dynam. Systems, 2007, 27, 1719–1735[Crossref]
  • [34] Siegel C.L., Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1952, 21–30
  • [35] Sternberg S., Local contractions and a theorem of Poincaré, Amer. J. Math., 1957, 79, 809–824[Crossref]
  • [36] Totoki H., Time changes of flows, Mem. Fac. Sci. Kyushu Univ. Ser. A, 1966, 20, 27–55
  • [37] Venti R., Linear normal forms of differential equations, J. Differential Equations, 1966, 2, 182–194[Crossref]

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.