Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 7 | 3 | 558-567

Tytuł artykułu

Lacunary equi-statistical convergence of positive linear operators

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
In this paper, the concept of lacunary equi-statistical convergence is introduced and it is shown that lacunary equi-statistical convergence lies between lacunary statistical pointwise and lacunary statistical uniform convergence. Inclusion relations between equi-statistical and lacunary equi-statistical convergence are investigated and it is proved that, under some conditions, lacunary equi-statistical convergence and equi-statistical convergence are equivalent to each other. A Korovkin type approximation theorem via lacunary equi-statistical convergence is proved. Moreover it is shown that our Korovkin type approximation theorem is a non-trivial extension of some well-known Korovkin type approximation theorems. Finally the rates of lacunary equi-statistical convergence by the help of modulus of continuity of positive linear operators are studied.

Wydawca

Czasopismo

Rocznik

Tom

7

Numer

3

Strony

558-567

Daty

wydano
2009-09-01
online
2009-08-12

Twórcy

  • Eastern Mediterranean University
autor
  • Eastern Mediterranean University

Bibliografia

  • [1] Altomare F., Campiti M., Korovkin-type approximation theory and its applications, Walter de Gruyter & Co., Berlin, 1994
  • [2] Balcerzak M., Dems K., Komisarski A.,Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl., 2007 328, 715–729 http://dx.doi.org/10.1016/j.jmaa.2006.05.040
  • [3] Duman O., Khan M.K., Orhan C.,A-statistical convergence of approximating operators. Math. Inequal. Appl., 2003 6, 689–699
  • [4] Duman O., Orhan C.,Rates of A-statistical convergence of positive linear operators. Appl. Math. Lett., 2005 18, 1339–1344 http://dx.doi.org/10.1016/j.aml.2005.02.029
  • [5] Erkuş E., Duman O.,A-statistical extension of the Korovkin type approximation theorem. Proc. Indian Acad. Sci. Math. Sci., 2005. 115, 499–508 http://dx.doi.org/10.1007/BF02829812
  • [6] Erkuş E., Duman O.,A Korovkin type approximation theorem in statistical sense. Studia Sci. Math. Hungar., 2006 43, 285–294
  • [7] Fast H.,Sur la convergence statistique. Colloquium Math., 1951 2, 241–244
  • [8] Freedman A.R., Sember J.J.,Densities and summability. Pacific J. Math., 1981 95, 293–305
  • [9] Freedman A.R., Sember J.J., Raphael M.,Some Cesàro-type summability spaces. Proc. London Math. Soc. (3), 1978 37, 508–520 http://dx.doi.org/10.1112/plms/s3-37.3.508
  • [10] Fridy J.A.,On statistical convergence. Analysis, 1985 5, 301–313
  • [11] Fridy J.A., Orhan C.,Lacunary statistical convergence. Pacific J. Math., 1993 160, 43–51
  • [12] Gadjiev A.D., Orhan C.,Some approximation theorems via statistical convergence. Rocky Mountain J. Math., 2002 32, 129–138 http://dx.doi.org/10.1216/rmjm/1030539612
  • [13] Karakuş S., Demirci K., Duman O.,Equi-statistical convergence of positive linear operators. J. Math. Anal. Appl., 2008 339, 1065–1072 http://dx.doi.org/10.1016/j.jmaa.2007.07.050
  • [14] Kolk E.,Matrix summability of statistically convergent sequences. Analysis, 1993 13, 77–83
  • [15] Korovkin P.P., Linear operators and approximation theory, Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India) Delhi, 1960
  • [16] Patterson R.F., Savaş E.,Korovkin and Weierstrass approximation via lacunary statistical sequences. J. Math. Stat., 2005 1, 165–167 http://dx.doi.org/10.3844/jmssp.2005.165.167

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-009-0009-4