Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 7 | 1 | 124-139

Tytuł artykułu

On the Ricci operator of locally homogeneous Lorentzian 3-manifolds

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.

Wydawca

Czasopismo

Rocznik

Tom

7

Numer

1

Strony

124-139

Opis fizyczny

Daty

wydano
2009-03-01
online
2009-01-10

Twórcy

  • Dipartimento di Matematica “E. De Giorgi”, Università del Salento, Lecce, Italy
  • Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

Bibliografia

  • [1] Bueken P., Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures π1 = π2 ≠ π3, J. Math. Phys., 1997, 38, 1000–1013 http://dx.doi.org/10.1063/1.531880[Crossref]
  • [2] Bueken P., On curvature homogeneous three-dimensional Lorentzian manifolds, J. Geom. Phys., 1997, 22, 349–362 http://dx.doi.org/10.1016/S0393-0440(96)00037-X[Crossref]
  • [3] Bueken P., Djoric M., Three-dimensional Lorentz metrics and curvature homogeneity of order one, Ann. Glob. Anal. Geom., 2000, 18, 85–103 http://dx.doi.org/10.1023/A:1006612120550[Crossref]
  • [4] Calvaruso G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 2007, 57, 1279–1291. Addendum: J. Geom. Phys., 2008, 58, 291–292 http://dx.doi.org/10.1016/j.geomphys.2006.10.005[Crossref]
  • [5] Calvaruso G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 2007, 127, 99–119 http://dx.doi.org/10.1007/s10711-007-9163-7[Crossref]
  • [6] Calvaruso G., Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues, Diff. Geom. Appl., 2008, 26, 419–433 http://dx.doi.org/10.1016/j.difgeo.2007.11.031[Crossref]
  • [7] Calvaruso G., Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor, preprint
  • [8] Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 2005, 38, 841–850 http://dx.doi.org/10.1088/0305-4470/38/4/005[Crossref]
  • [9] Cordero L.A., Parker P.E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat., Serie VII, 1997, 17, 129–155
  • [10] Kowalski O., Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Nagoya Math. J., 1993, 132, 1–36
  • [11] Kowalski O., Nikčević S.Ž., On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds, Geom. Dedicata, 1996, 62, 65–72 http://dx.doi.org/10.1007/BF00240002[Crossref]
  • [12] Kowalski O., Prüfer F., On Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Math. Ann., 1994, 300, 17–28 http://dx.doi.org/10.1007/BF01450473[Crossref]
  • [13] Milnor J., Curvature of left invariant metrics on Lie groups, Adv. Math., 1976, 21, 293–329 http://dx.doi.org/10.1016/S0001-8708(76)80002-3[Crossref]
  • [14] O’Neill B., Semi-Riemannian Geometry, Academic Press, New York, 1983
  • [15] Nomizu K., Left-invariant Lorentz metrics on Lie groups, Osaka J. Math., 1979, 16, 143–150
  • [16] Rahmani S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 1992, 9, 295–302 (in French) http://dx.doi.org/10.1016/0393-0440(92)90033-W[Crossref]

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-008-0061-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.