Warianty tytułu
Języki publikacji
Abstrakty
Let n, s and t be three integers with s ≥ 1, t ≥ 0 and n = 3s + 4t. Let G be a graph of order n such that the minimum degree of G is at least (n + s)/2. Then G contains a 2-factor with s + t components such that s of them are triangles and t of them are quadrilaterals.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
543-558
Opis fizyczny
Daty
wydano
2008-12-01
online
2008-10-08
Twórcy
Bibliografia
- [1] Bollobás B., Extremal graph theory, Academic Press, London-New York, 1978
- [2] Corrádi K., Hajnal A., On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 1963, 14, 423–439 http://dx.doi.org/10.1007/BF01895727
- [3] El-Zahar M.H., On circuits in graphs, Discrete Math., 1984, 50, 227–230 http://dx.doi.org/10.1016/0012-365X(84)90050-5
- [4] Enomoto H., On the existence of disjoint cycles in a graph, Combinatorica, 1998, 18, 487–492 http://dx.doi.org/10.1007/s004930050034
- [5] Erdős P., Some recent combinatroial problems, Technical Report, University of Bielefeld, November 1990
- [6] Randerath B., Schiermeyer I., Wang H., On quadrilaterals in a graph, Discrete Math., 1999, 203, 229–237. http://dx.doi.org/10.1016/S0012-365X(99)00053-9
- [7] Wang H., On the maximum number of independent cycles in a graph, Discrete Math., 1990, 205, 183–190 http://dx.doi.org/10.1016/S0012-365X(99)00009-6
- [8] Wang H., Vertex-disjoint quadrilaterals in graphs, Discrete Math., 2004, 288, 149–166 http://dx.doi.org/10.1016/j.disc.2004.02.020
- [9] Wnag H., Proof of the Erdős-Faudree Conjecture on Quadrilaterals, preprint
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-008-0048-2