A strongly pseudoconvex function is generalized to non-smooth settings. A complete characterization of the strongly pseudoconvex radially lower semicontinuous functions is obtained.
[1] Diewert W.E., Alternative characterizations of six kinds of quasiconvexity in the nondifferentiable case with applications to nonsmooth programming, In: Schaible S., Ziemba W.T. (Eds.), Generalized concavity in optimization and economics, Academic Press, New York, 1981, 51–95
[2] Diewert W.E., Avriel M., Zang I., Nine kinds of quasiconcavity and concavity, J. Econom. Theory, 1981, 25, 397–420 http://dx.doi.org/10.1016/0022-0531(81)90039-9
[3] Hadjisavvas N., Schaible S., On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl., 1993, 79, 139–155 http://dx.doi.org/10.1007/BF00941891
[4] Hadjisavvas N., Schaible S., On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl., 1995, 85,741–742 http://dx.doi.org/10.1007/BF02193065
[5] Ivanov V.I., First order characterizations of pseudoconvex functions, Serdica Math. J., 2001, 27, 203–218
[6] Karamardian S., Complementarity problems over cones with monotone and pseudomonotone maps., J. Optim. Theory Appl., 1976, 18, 445–454 http://dx.doi.org/10.1007/BF00932654
[7] Karamardian S., Schaible S., Seven kinds of monotone maps, J. Optim. Theory Appl., 1990, 66, 37–46 http://dx.doi.org/10.1007/BF00940531