PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 3 | 405-421
Tytuł artykułu

Cyclic cohomology of certain nuclear Fréchet algebras and DF algebras

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give explicit formulae for the continuous Hochschild and cyclic homology and cohomology of certain $$ \hat \otimes $$ -algebras. We use well-developed homological techniques together with some niceties of the theory of locally convex spaces to generalize the results known in the case of Banach algebras and their inverse limits to wider classes of topological algebras. To this end we show that, for a continuous morphism ϕ: x → y of complexes of complete nuclear DF-spaces, the isomorphism of cohomology groups H n(ϕ): H n(x) → H n (y) is automatically topological. The continuous cyclic-type homology and cohomology are described up to topological isomorphism for the following classes of biprojective $$ \hat \otimes $$ -algebras: the tensor algebra E $$ \hat \otimes $$ F generated by the duality (E,F,<·,·>) for nuclear Fréchet spaces E and F or for nuclear DF-spaces E and F; nuclear biprojective Köthe algebras λ(P) which are Fréchet spaces or DF-spaces; the algebra of distributions ε*(G) on a compact Lie group G.
Twórcy
Bibliografia
  • [1] Brodzki J., Lykova Z.A., Excision in cyclic type homology of Fréchet algebras, Bull. London Math. Soc., 2001, 33, 283–291 http://dx.doi.org/10.1017/S0024609301007998
  • [2] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994
  • [3] Cuntz J., Cyclic theory and the bivariant Chern-Connes character, In: Noncommutative geometry, Lecture Notes in Math., Springer, Berlin, 2004, 1831, 73–135
  • [4] Cuntz J., Quillen D., Operators on noncommutative differential forms and cyclic homology, In: Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology VI, Int. Press, Cambridge, MA, 1995, 77–111
  • [5] Grothendieck A., Sur les espaces (F) et (DF), Summa Brasil. Math., 1954, 3, 57–123 (in French)
  • [6] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 1955, 16
  • [7] Helemskii A.Ya., The homology of Banach and topological algebras, Kluwer Academic Publishers Group, Dordrecht, 1989
  • [8] Helemskii A.Ya., Banach cyclic (co)homology and the Connes-Tzygan exact sequence, J. London Math. Soc., 1992, 46, 449–462 http://dx.doi.org/10.1112/jlms/s2-46.3.449
  • [9] Helemskii A.Ya., Banach and polynormed algebras. General theory, representations, homology, Oxford University Press, Oxford, 1992
  • [10] Husain T., The open mapping and closed graph theorems in topological vector spaces, Friedr. Vieweg and Sohn, Braunschweig, 1965
  • [11] Jarchow H., Locally convex spaces, B.G. Teubner, Stuttgart, 1981
  • [12] Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 1972, 127
  • [13] Kassel C., Cyclic homology, comodules, and mixed complexes, J. Algebra, 1987, 107, 195–216 http://dx.doi.org/10.1016/0021-8693(87)90086-X
  • [14] Khalkhali M., Algebraic connections, universal bimodules and entire cyclic cohomology, Comm. Math. Phys., 1994, 161, 433–446 http://dx.doi.org/10.1007/BF02101928
  • [15] Köthe G., Topological vector spaces I, Die Grundlehren der mathematischen Wissenschaften, 159, Springer-Verlag New York Inc., New York, 1969
  • [16] Loday J.-L., Cyclic Homology, Springer Verlag, Berlin, 1992
  • [17] Lykova Z.A., Cyclic cohomology of projective limits of topological algebras, Proc. Edinburgh Math. Soc., 2006, 49, 173–199 http://dx.doi.org/10.1017/S0013091504000410
  • [18] Lykova Z.A., Cyclic-type cohomology of strict inductive limits of Fréchet algebras, J. Pure Appl. Algebra, 2006, 205, 471–497 http://dx.doi.org/10.1016/j.jpaa.2005.07.014
  • [19] Lykova Z.A., White M.C., Excision in the cohomology of Banach algebras with coefficients in dual bimodules, In: Albrecht E., Mathieu M. (Eds.), Banach Algebras’97, Walter de Gruyter Publishers, Berlin, 1998, 341–361
  • [20] Meise R., Vogt D., Introduction to Functional Analysis, Clarendon Press, Oxford, 1997
  • [21] Meyer R., Comparisons between periodic, analytic and local cyclic cohomology, preprint available at http://arxiv.org/abs/math/0205276 v2
  • [22] Pietsch A., Nuclear Locally Convex Spaces, Springer Verlag, Berlin, 1972
  • [23] Pirkovskii A.Yu., Biprojective topological algebras of homological bidimension 1, J. Math. Sci., 2001, 111, 3476–3495 http://dx.doi.org/10.1023/A:1016058211668
  • [24] Pirkovskii A.Yu., Homological bidimension of biprojective topological algebras and nuclearity, Acta Univ. Oulu. Ser Rerum Natur., 2004, 408, 179–196
  • [25] Pták V., On complete topological linear spaces, Czech. Math. J., 1953, 78, 301–364 (in Russian)
  • [26] Puschnigg M., Excision in cyclic homology theories, Invent. Math., 2001, 143, 249–323 http://dx.doi.org/10.1007/s002220000105
  • [27] Robertson A.P., Robertson W., Topological vector spaces, Cambridge Univ. Press, 1973
  • [28] Selivanov Yu.V., Biprojective Banach algebras, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 15, 387–399
  • [29] Selivanov Yu.V., Cohomology of biflat Banach algebras with coefficients in dual bimodules, Functional Anal. Appl., 1995, 29, 289–291 http://dx.doi.org/10.1007/BF01077480
  • [30] Selivanov Yu.V., Biprojective topological algebras, preprint
  • [31] Taylor J.L., A general framework for a multi-operator functional calculus, Adv. Math., 1972, 9, 183–252 http://dx.doi.org/10.1016/0001-8708(72)90017-5
  • [32] Treves F., Topological vector spaces distributions and kernels, Academic Press, New York, London, 1967
  • [33] Wodzicki M., Vanishing of cyclic homology of stable C*-algebras, C. R. Acad. Sci. Paris I, 1988, 307, 329–334
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-008-0040-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.