EN
n×m-valued Łukasiewicz algebras with negation were introduced and investigated in [20, 22, 23]. These algebras constitute a non trivial generalization of n-valued Łukasiewicz-Moisil algebras and in what follows, we shall call them n×m-valued Łukasiewicz-Moisil algebras (or LM n×m -algebras). In this paper, the study of this new class of algebras is continued. More precisely, a topological duality for these algebras is described and a characterization of LM n×m -congruences in terms of special subsets of the associated space is shown. Besides, it is determined which of these subsets correspond to principal congruences. In addition, it is proved that the variety of LM n×m -algebras is a discriminator variety and as a consequence, certain properties of the congruences are obtained. Finally, the number of congruences of a finite LM n×m -algebra is computed.