Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove estimates for the sectional curvature of hyperkähler quotients and give applications to moduli spaces of solutions to Nahm’s equations and Hitchin’s equations.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
191-203
Opis fizyczny
Daty
wydano
2008-06-01
online
2008-04-15
Twórcy
Bibliografia
- [1] Aubin T., Nonlinear analysis on manifolds. Monge-Ampère equations, Springer Verlag, New York, 1982
- [2] Besse A.L., Einstein manifolds, Springer Verlag, Berlin, 1987
- [3] Donaldson S.K., Nahm’s equations and the classification of monopoles, Comm. Math. Phys., 1984, 96, 387–407 http://dx.doi.org/10.1007/BF01214583
- [4] Donaldson S.K., Boundary value problems for Yang-Mills fields, J. Geom. Phys., 1992, 8, 89–122 http://dx.doi.org/10.1016/0393-0440(92)90044-2
- [5] Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 1987, 55, 59–126 http://dx.doi.org/10.1112/plms/s3-55.1.59
- [6] Hurtubise J.C., The classification of monopoles for the classical groups, Comm. Math. Phys., 1989, 120, 613–641 http://dx.doi.org/10.1007/BF01260389
- [7] Jost J., Peng X.-W., Group actions gauge transformations and the calculus of variations, Math. Ann., 1992, 293, 595–621 http://dx.doi.org/10.1007/BF01444737
- [8] Lang S., Fundamentals of differential geometry, Springer Verlag, New York, 1999
- [9] Nahm W., The construction of all self-dual multimonopoles by the ADHM method, in: Monopoles in quantum field theory, World Sci. Publishing, Singapore, 1982, 87–94
- [10] Swartz C., Continuity and hypocontinuity for bilinear maps, Math. Z., 1984, 186, 321–329 http://dx.doi.org/10.1007/BF01174886
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-008-0026-8