Here we study the relationship between the stability of coherent systems and the stability of holomorphic triples over a curve of arbitrary genus. Moreover we apply these results to study some properties and give some examples of holomorphic triples on the projective line.
[5] Bradlow S.B., García-Prada O., Gothen P.B., Homotopy groups of moduli spaces of representations, preprint available at http://arxiv.org/abs/math/0506444 v2
[6] Bradlow S.B., García-Prada O., Mercat V., Muñoz V., Newstead P.E., On the geometry of moduli spaces of coherent systems on algebraic curves, preprint available at http://arxiv.org/abs/math/0407523 v5
[7] Bradlow S.B., García-Prada O., Munoz V., Newstead P.E., Coherent systems and Brill-Noether theory, Internat. J. Math., 2003, 14, 683–733 http://dx.doi.org/10.1142/S0129167X03002009
[8] Grothendieck A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 1957, 79, 121–138 (in French) http://dx.doi.org/10.2307/2372388
[9] Lange H., Newstead P.E., Coherent systems on elliptic curves, Internat. J. Math., 2005, 16, 787–805 http://dx.doi.org/10.1142/S0129167X05003090
[10] Lange H., Newstead P.E., Coherent systems of genus 0, Internat. J. Math., 2004, 15, 409–424 http://dx.doi.org/10.1142/S0129167X04002326
[11] Lange H., Newstead P.E., Coherent systems of genus 0 II Existence results for k ≥ 3, Internat. J. Math., 2007, 18, 363–393 http://dx.doi.org/10.1142/S0129167X07004072