Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 6 | 1 | 25-42
Tytuł artykułu

Compact corigid objects in triangulated categories and co-t-structures

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the work of Hoshino, Kato and Miyachi, [11], the authors look at t-structures induced by a compact object, $$ C $$, of a triangulated category, $$ \mathcal{T} $$, which is rigid in the sense of Iyama and Yoshino, [12]. Hoshino, Kato and Miyachi show that such an object yields a non-degenerate t-structure on $$ \mathcal{T} $$ whose heart is equivalent to Mod(End($$ C $$)op). Rigid objects in a triangulated category can the thought of as behaving like chain differential graded algebras (DGAs). Analogously, looking at objects which behave like cochain DGAs naturally gives the dual notion of a corigid object. Here, we see that a compact corigid object, $$ \mathcal{S} $$, of a triangulated category, $$ \mathcal{T} $$, induces a structure similar to a t-structure which we shall call a co-t-structure. We also show that the coheart of this non-degenerate co-t-structure is equivalent to Mod(End($$ \mathcal{S} $$)op), and hence an abelian subcategory of $$ \mathcal{T} $$.
Opis fizyczny
  • [1] Aldrich S.T., García Rozas J.R., Exact and semisimple differential graded algebras, Comm. Algebra, 2002, 30, 1053–1075
  • [2] Avramov L., Halperin S., Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra algebraic topology and their interactions (Stockholm, 1983), 1–27, Lecture Notes in Math. 1183, Springer, Berlin, 1986
  • [3] Beilinson A.A., Bernstein J., Deligne P., Faisceaux pervers, Astérique, 100, Soc. Math. France, Paris, 1982 (in French)
  • [4] Beligiannis A., Reiten I., Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., 2007, 188, no. 883
  • [5] Van den Bergh M., A remark on a theorem by Deligne, Proc. Amer. Math. Soc., 2004, 132, 2857–2858
  • [6] Bernstein J., Lunts V, Eguivariant sheaves and functors, Lecture Notes in Math. 1578, Springer-Verlag, Berlin Heidelberg, 1994
  • [7] Bondarko M.V., Weight structures for triangulated categories: weight filtrations, weight spectral sequences and weight complexes, applications to motives and to the stable homotopy category, preprint available at
  • [8] Enochs E., Injective and flat covers, envelopes and resolvents, Israel J. Math., 1981, 39, 189–209
  • [9] Félix Y., Halperin S., Thomas J-C., Rational homotopy theory, Graduate Texts in Mathematics 205, Springer, New York, 2001
  • [10] Frankild A., Jørgensen P., Homological identities for differential graded algebras, J. Algebra, 2003, 265, 114–135
  • [11] Hoshino M., Kato Y., Miyachi J., On t-structures and torsion theories induced by compact objects, J. Pure Appl. Algebra, 2002, 167, 15–35
  • [12] Iyama O., Yoshino Y., Mutations in triangulated categories and rigid Cohen-Macaulay modules, preprint available at
  • [13] Kashiwara M., Schapira P., Sheaves on manifolds, A Series of Comprehensive Studies in Mathematics 292, Springer-Verlag, Berlin Heidelberg, 1990
  • [14] MacLane S., Categories for the working mathematician, Springer, New York, 1971
  • [15] Neeman A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 1996, 9, 205–236
  • [16] Neeman A., Triangulated categories, Annals of Mathematics Studies, Princeton University Press, Princeton and Oxford, 2001
  • [17] Rotman J.J., An introduction to algebraic topology, Graduate Texts in Mathematics 119, Springer-Verlag, New York, 1988
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.