PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 6 | 1 | 1-11
Tytuł artykułu

Codes that attain minimum distance in every possible direction

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following problem motivated by investigation of databases is studied. Let $$ \mathcal{C} $$ be a q-ary code of length n with the properties that $$ \mathcal{C} $$ has minimum distance at least n − k + 1, and for any set of k − 1 coordinates there exist two codewords that agree exactly there. Let f(q, k)be the maximum n for which such a code exists. f(q, k)is bounded by linear functions of k and q, and the exact values for special k and qare determined.
Wydawca
Czasopismo
Rocznik
Tom
6
Numer
1
Strony
1-11
Opis fizyczny
Daty
wydano
2008-03-01
online
2008-02-26
Twórcy
autor
autor
Bibliografia
  • [1] Abiteboul S., Hull R., Vianu V., Foundations of databases, Addison-Wesley, 1995
  • [2] Armstrong W.W., Dependency structures of data base relationships, Information Processing, 1974, 74, 580–583
  • [3] Demetrovics J., On the equivalence of candidate keys with Sperner systems, Acta Cybernet., 1978/79, 4, 247–252
  • [4] Demetrovics J., Füredi Z., Katona G.O.H., Minimum matrix representation of closure operations, Discrete Appl. Math., 1985, 11, 115–128 http://dx.doi.org/10.1016/S0166-218X(85)80003-2
  • [5] Demetrovics J., Gyepesi G., A note on minimal matrix representation of closure operations, Combinatorica, 1983, 3, 177–179 http://dx.doi.org/10.1007/BF02579291
  • [6] Demetrovics J., Katona G.O.H., Extremal combinatorial problems in relational data base, In: Fundamentals of computation theory, Springer-Verlag, Berlin-New York, 1981
  • [7] Demetrovics J., Katona G.O.H., Sali A., The characterization of branching dependencies, Discrete Appl. Math., 1992, 40, 139–153 http://dx.doi.org/10.1016/0166-218X(92)90027-8
  • [8] Demetrovics J., Katona G.O.H., Sali A., Design type problems motivated by database theory, J. Statist. Plann. Inference, 1998, 72, 149–164 http://dx.doi.org/10.1016/S0378-3758(98)00029-9
  • [9] Demetrovics J., Katona G.O.H., A survey of some combinatorial results concerning functional dependencies in database relations, Ann. Math. Artificial Intelligence, 1993, 7, 63–82 http://dx.doi.org/10.1007/BF01556350
  • [10] Fagin R., Horn clauses and database dependencies, J. Assoc. Comput. Mach., 1982, 29, 952–985
  • [11] Füredi Z., Perfect error-correcting databases, Discrete Appl. Math., 1990, 28, 171–176 http://dx.doi.org/10.1016/0166-218X(90)90114-R
  • [12] Hartmann S., Link S., Schewe K.-D., Weak functional dependencies in higher-order datamodels, In: Seipel D., Turull Torres J. M. (Eds.), Foundations of Information and Knowledge Systems, Springer LNCS, 2942, Springer Verlag, 2004
  • [13] Odlyzko A.M., Asymptotic enumeration methods, In: Graham R.L, Crbtschel M., Lovász L. (Eds.), Handbook of combinatorics, Elsevier, Amsterdam, 1995
  • [14] Sali A., Minimal keys in higher-order datamodels, In: Seipel D., Turull Torres J. M. (Eds.), Foundations of Information and Knowledge Systems, Springer LNCS, 2942, Springer Verlag, 2004
  • [15] Sali A., Schewe K.-D., Counter-free keys and functional dependencies in higher-order datamodels, Fund. Inform., 2006, 70, 277–301
  • [16] Sali A., Schewe K.-D., Keys and Armstrong databases in trees with restructuring, Acta Cybernet., preprint
  • [17] Silva A.M., Melkanoff M.A., A method for helping discover the dependencies of a relation, In: Gallaire H., Minker J., Nicolas J.-M. (Eds.), Advances in Data Base Theory, Plenum Publishing, New York, 1981
  • [18] Turán P., On an extremal problem in graph theory, Mat. Fiz. Lapok, 1941, 48, 436–452 (in Hungarian)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-008-0001-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.