Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.
[1] W. O. Amrein, A. Boutet de Monvel and V. Georgescu: C 0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Math. Ser., Vol. 135, Birkhäuser, 1996.
[2] M. Ben-Artzi and A. Devinatz: “The limiting absorption principle for partial differential operators”, Mem. Amer. Math. Soc., Vol. 66(364), (1987), pp. iv+70.
[3] M. Ben-Artzi, Y. Dermenjian and J.-C. Guillot: “Acoustic waves in perturbed stratified fluids: a spectral theory”, Comm. Partial Differential Equations, Vol. 14, (1989), pp. 479–517.
[4] J. Bergh and J. Löfström: Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976.
[5] A. Boutet de Monvel-Berthier and V. Georgescu: “Some developments and applications of the abstract Mourre theory”, Méthodes semi-classiques, Vol. 2, Nantes, 1991; Astérisque Vol. 210, (1992), pp. 27–48.
[6] A. Boutet de Monvel-Berthier and V. Georgescu: “Graded C*-algebras and many-body perturbation theory: II The Mourre estimate”, Astérisque, Vol. 210, (1992), pp. 75–96.
[7] A. Boutet de Monvel-Berthier, V. Georgescu and A. Soffer: “N-body Hamiltonians with hard-core interactions”, Rev. Math. Phys. Vol. 6, (1994), pp. 515–596. http://dx.doi.org/10.1142/S0129055X94000195
[8] A. Boutet de Monvel-Berthier and D. Manda: “Spectral and scattering theory for wave propagation in perturbed stratified media”, J. Math. Anal. Appl., Vol. 91, (1995), pp. 137–167. http://dx.doi.org/10.1016/S0022-247X(85)71124-9
[9] A. Boutet de Monvel and R. Purice: “The conjugate operator method: application to Dirac operators and to stratified media”, In: Evolution equations, Feshbach resonances, singular Hodge theory, Math. Top., Vol. 16, Wiley-VCH, Berlin, 1999, 243–286.
[10] J. Derezinski and C. Gérard: Scattering theory of classical and quantum N-particle systems, Springer-Verlag, Berlin, 1997.
[11] Y. Dermenjian, M. Durand and V. Iftimie: “Spectral analysis of an acoustic multistratified perturbed cylinder”. Comm. Partial Differential Equations, Vol. 23(1–2), (1998), pp. 141–169.
[12] D.E. Edmunds and W.D. Evans: Spectral theory and differential operators, Oxford University Press, New York, 1987.
[13] D.M. Eidus: “The principle of limiting amplitude”, Uspehi Mat. Nauk, Vol. 24(3), (1969), pp. 91–156.
[14] R. Froese and I. Herbst: “Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators”, Comm. Math. Phys., Vol. 87, (1982/83), pp. 429–447. http://dx.doi.org/10.1007/BF01206033
[15] C.I. Goldstein: “Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I.”, Trans. Amer. Math. Soc., Vol. 135, (1969), pp. 1–31. http://dx.doi.org/10.2307/1995000
[16] E. Hille and R.S. Phillips: Functional analysis and semi-groups (Third printing of the revised edition of 1957), American Mathematical Society, Providence, R. I., 1974.
[17] H. Iwashita: “Spectral theory for symmetric systems in an exterior domain”, Tsukuba J. Math., Vol. 11, (1987), pp. 241–256.
[18] K. A. Kiers and W. van Dijk: “Scattering in one dimension: the coupled Schrödinger equation, threshold behaviour and Levinson’s theorem”, J. Math. Phys., Vol. 37, (1996), pp. 6033–6059. http://dx.doi.org/10.1063/1.531762
[19] D. Krejcirik and R.T. de Aldecoa: “The nature of the essential spectrum in curved quantum waveguides”, J. Phys. A, Vol. 37, (2004), pp. 5449–5466. http://dx.doi.org/10.1088/0305-4470/37/20/013
[20] I. Laba: “Long-range one-particle scattering in a homogeneous magnetic field”, Duke Math. J., Vol. 70(2), (1993), pp. 283–303. http://dx.doi.org/10.1215/S0012-7094-93-07005-6
[21] R.B. Lavine: “Commutators and scattering theory. II. A class of one body problems”, Indiana Univ. Math. J., Vol. 21, (1971/72), pp. 643–656. http://dx.doi.org/10.1512/iumj.1972.21.21050
[22] W.C. Lyford: “Spectral analysis of the Laplacian in domains with cylinders”, Math Ann., Vol. 218, (1975), pp. 229–251. http://dx.doi.org/10.1007/BF01349697
[23] M. Melgaard: “Spectral properties at a threshold for two-channel Hamiltonians. II. Applications to scattering theory”, J. Math. Anal. Appl., Vol. 256, (2001), pp. 568–586. http://dx.doi.org/10.1006/jmaa.2000.7326
[24] M. Melgaard: “Optimal limiting absorption principle for a Schrödinger type operator on a Lipschitz cylinder”, Manus. Math., Vol. 118, (2005), pp. 253–270. http://dx.doi.org/10.1007/s00229-005-0591-0
[25] E. Mourre: “Absence of singular continuous spectrum for certain self-adjoint operators”, Comm. Math. Phys., Vol. 78, (1980/81), pp. 391–408. http://dx.doi.org/10.1007/BF01942331
[26] P. Perry, I.M. Sigal and B. Simon: “Spectral analysis of N-body Schrödinger operators”, Ann. of Math., Vol. 114(2), (1981), pp. 519–567. http://dx.doi.org/10.2307/1971301
[27] M. Reed and B. Simon: Methods of modern mathematical physics, I. Functional analysis, Academic Press, New York, 1980.
[28] M. Reed and B. Simon: Methods of modern mathematical physics, II. Fourier analysis, self-adjointness, Academic Press, New York, 1975.
[29] M. Reed and B. Simon: Methods of modern mathematical physics, III. Scattering theory, Academic Press, New York, 1979.
[30] B. Simon: “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Anal., Vol. 28, (1978), pp. 377–385. http://dx.doi.org/10.1016/0022-1236(78)90094-0
[31] H. Tamura: “Principle of limiting absorption for N-body Schrödinger operators - a remark on the commutator method”, Lett. Math. Phys., Vol. 17, (1989), pp. 31–36. http://dx.doi.org/10.1007/BF00420011
[32] H. Tamura: “Resolvent estimates at low frequencies and limiting amplitude principle for acoustic propagators”, J. Math. Soc. Japan, Vol. 41, (1989), pp. 549–575. http://dx.doi.org/10.2969/jmsj/04140549
[33] R. Weder: “Spectral analysis of strongly propagative systems”, J. Reine Angew. Math, Vol. 354, (1984), pp. 95–122.