[1] V. Alexeev: “Two two-dimensional terminations”, Duke Math. J., Vol. 69(3), (1993), pp. 527–545. http://dx.doi.org/10.1215/S0012-7094-93-06922-0
[2] F. Ambro: “On minimal log discrepancies”, Math. Res. Lett., Vol. 6(5–6), (1999), pp. 573–580.
[3] A. Borisov: “Minimal discrepancies of toric singularities”, Manuscripta Math., Vol. 92(1), (1997), pp. 33–45.
[4] A. Borisov: “On classification of toric singularities”, Algebraic geom., Vol. 9; J. Math. Sci. (New York), Vol. 94(1), (1999), pp. 1111–1113.
[5] J.W.S. Cassels: An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 45, Cambridge University Press, New York, 1957.
[6] J. Lawrence: Finite unions of closed subgroups of the n-dimensional torus, Applied geometry and discrete mathematics, 433–441, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991.
[7] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988.
[8] V.V. Shokurov: Problems about Fano varieties, Birational Geometry of Algebraic Varieties, Open Problems-Katata, 1988, pp. 30–32.
[9] V.V. Shokurov: A.c.c. in codimension 2, preprint 1993.
[10] V.V. Shokurov: “Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips”, Tr. Mat. Inst. Steklova (Russian), Vol. 246 (2004); Algebr. Geom. Metody, Svyazi i Prilozh., pp. 328-351; translation in: Proc. Steklov Inst. Math., Vol. 3(246), 2004, pp. 315–336.