Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2006 | 4 | 2 | 250-259

Tytuł artykułu

Squared cycles in monomial relations algebras

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let $$\mathbb{K}$$ be an algebraically closed field. Consider a finite dimensional monomial relations algebra $$\Lambda = {{\mathbb{K}\Gamma } \mathord{\left/ {\vphantom {{\mathbb{K}\Gamma } I}} \right. \kern-\nulldelimiterspace} I}$$ of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra $$\mathbb{K}\Gamma $$ . There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern in the syzygies of a specific factor module of the corresponding indecomposable projective module is found, allowing us to conclude that the square of any cycle must lie in the ideal I.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

4

Numer

2

Strony

250-259

Opis fizyczny

Daty

wydano
2006-06-01
online
2006-06-01

Twórcy

autor
  • California State University, Stanislaus

Bibliografia

  • [1] D. Anick and E. Green: “On the homology of quotients of path algebras”, Comm. Algebra, Vol. 15(1,2), (1987), pp. 309–341.
  • [2] M. Auslander, I. Reiten and S. Smalø: Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995.
  • [3] K. Bongartz and B. Huisgen-Zimmermann: “The geometry of uniserial representations of algebras II. Alternate viewpoints and uniqueness”, J. Pure Appl. Algebra, Vol. 157, (2001), pp. 23–32. http://dx.doi.org/10.1016/S0022-4049(00)00031-1
  • [4] K. Bongartz and B. Huisgen-Zimmermann: “Varieties of uniserial representations IV. Kinship to geometric quotients”, Trans. Am. Math. Soc., Vol. 353, (2001), pp. 2091–2113. http://dx.doi.org/10.1090/S0002-9947-01-02712-X
  • [5] W. D. Burgess: “The graded Cartan matrix and global dimension of 0-relations Algebras”, Proc. Edinburgh Math. Soc., Vol. 30(3), (1987), pp. 351–362.
  • [6] P. Gabriel: Auslander-Reiten seuquence and representation-finite algebras, Lect. Notes Math. 831, Springer-Verlag, New York, 1980, pp. 1–71.
  • [7] E. Green, D. Happel and D. Zacharia: “Projective resolutions over Artin algebras with zero relations”, Illnois J. Math., Vol. 29(1), (1985), pp. 180–190.
  • [8] B. Huisgen-Zimmermann: “The geometry of uniserial representations of finite dimensional algebras I”, J. Pure Appl. Algebra, Vol. 127, (1988), pp. 39–72.
  • [9] B. Huisgen-Zimmermann: “The geometry of uniserial representations of finite dimensional algebras III”, Trans. Am. Math. Soc., Vol. 348(12), (1996), pp. 4775–4812. http://dx.doi.org/10.1090/S0002-9947-96-01575-9
  • [10] B. Huisgen-Zimmermann: “Predicting syzygies of monomial relations algebras”, Manuscr. Math., Vol. 70, (1991), pp. 157–182.
  • [11] K. Igusa: “Notes on the no loops conjecture”, J. Pure Appl. Algebra, Vol. 69, (1990), pp. 161–176. http://dx.doi.org/10.1016/0022-4049(90)90040-O
  • [12] B. Jue: The uniserial geometry and homology of finite dimensional algebras, Thesis (Ph.D), University of California, Santa Barbara, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-006-0010-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.