Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2006 | 4 | 2 | 209-224

Tytuł artykułu

Subsheaves of the cotangent bundle

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

4

Numer

2

Strony

209-224

Opis fizyczny

Daty

wydano
2006-06-01
online
2006-06-01

Twórcy

  • University of California at Santa Barbara

Bibliografia

  • [1] F. Bogomolov: “Holomorphic Tensors and Vector Bundles on Projective Varieties”, Math. USSR Izv., Vol. 13, (1979), pp. 499–555. http://dx.doi.org/10.1070/IM1979v013n03ABEH002076
  • [2] S. Boucksom, J.P. Demailly, M. Paun and T. Peternell: “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, math.AG/0405285.
  • [3] F. Campana: “Réducation d’Albanèse d’un morphisme propre et faiblement kählérien. II. Groupes d’automorphismes relatifs”, Compositio Math., Vol. 54(3), (1985), pp. 399–416.
  • [4] F. Campana: “Connexité rationelle des variétés de Fano”, Ann. Sci. E.N.S., Vol. 25, (1992), pp. 539–545.
  • [5] F. Campana: “Fundamental Group and Positivity of Cotangent Bundles of Compact Kähler Manifolds”, J. Algebraic Geom., Vol. 4, (1995), pp. 487–502.
  • [6] F. Campana: “Orbifolds, Special Varieties and Classification Theory”, Ann. Inst. Fourier, Grenoble, Vol. 54(3), (2004), pp. 499–630.
  • [7] F. Campana and T. Peternell: “Geometric Stability of the Cotangent Bundle and the Universal Cover of a Projective Manifold”, math.AG/0405093.
  • [8] J.P. Demailly, T. Peternell and M. Schneider: “Pseudo-effective Line Bundles on compact Kähler Manifolds”, Intern. J. Math., Vol. 12(6), (2001), pp. 689–741.
  • [9] T. Ekedahl: T. Ekedahl: “Foliations and inseparable morphisms” (english), In: Algebraic geometry, Proc. Summer Res. Inst., (Brunswick/Maine 1985), Proc. Symp. Pure Math., Vol. 46(2), Amer. Math. Soc., Providence, RI, 1987, pp. 139–149.
  • [10] T. Graber, J. Harris and J. Starr: “Families of rationally connected varieties”, J. Amer. Math. Soc., Vol. 16, (2003), pp. 57–67. http://dx.doi.org/10.1090/S0894-0347-02-00402-2
  • [11] P. Griffiths: “Periods of Integrals on Algebraic Manifolds III”, Publ. Math. I.H.E.S., Vol. 38, (1970), pp. 125–180.
  • [12] S. Iitaka: Algebraic Geometry, Graduate Texts in Math., Vol. 76, Springer, 1982.
  • [13] Y. Kawamata: “Characterization of Abelian Varieties”, Comp. Math., Vol. 43, (1981), pp. 253–276.
  • [14] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat: Toroidal Embeddings I, Lectures Notes in Math., Vol. 339, Springer Verlag, 1973.
  • [15] J. Kollár: “Higher Direct Images of Dualizing Sheaves II”, Ann. Math., Vol. 124, (1986), pp. 171–202.
  • [16] J. Kollár: “Nonrational Hypersurfaces”, J. Am. Math. Soc., Vol. 8(1), (1995), pp. 241–249.
  • [17] J. Kollár: Shafarevich maps and automorphic forms, Princeton University Press, 1995.
  • [18] K. Matsuki, Introduction to the Mori program, Springer-Verlag, New York, 2002.
  • [19] Y. Miyaoka: “The Chern classes and Kodaira dimension of a minimal variety”, In: Proc. Sympos. Alg. Geom., Sendai 1985, Adv. Stud. Pure Math, Vol. 10, Kynokuniya, Tokyo, 1985, pp. 449–476.
  • [20] S. Mori: “Classification of higher-dimensional varieties”, In: Algebraic geometry, Bowdoin 1985 (Brunswick/Maine 1985), Proc. Symp. Pure Math., Vol. 46(1), Amer. Math. Soc., Providence, RI, 1987, pp. 269–331.
  • [21] Y. Namikawa: “On deformations of Calabi-Yau 3-folds with terminal singularities”, Topology, Vol. 33(3), (1994), pp. 429–446. http://dx.doi.org/10.1016/0040-9383(94)90021-3
  • [22] J.H.M. Steenbrink: Mixed Hodge Structure on the Vanishing Cohomology, Real and Complex Singularities, Nordic Summer School, Oslo, 1976, pp. 525–563.
  • [23] K. Ueno: Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lectures Notes in Math., Vol. 439, Springer Verlag, 1975.
  • [24] E. Viehweg: “Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs”, J. Reine Angew. Math., Vol. 330, (1982), pp. 132–142.
  • [25] E. Viehweg and K. Zuo: “On the isotriviality of families of projective manifolds over curves Complex Spaces”, J. Alg. Geom., Vol. 10, (2001), pp. 781–799.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-006-0003-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.